The Pennsylvania State University
The Graduate School

Department of Mechanical and Nuclear Engineering

MODELING, DESIGN, AND EXPERIMENTAL VALIDATION OF A TAILBOOM

VIBRATION ABSORBER USING FLUIDIC FLEXIBLE MATRIX COMPOSITE TUBES

A Dissertation in

Mechanical Engineering

by

Kentaro Miura

© 2016 Kentaro Miura

Submitted in Partial Fulfillment
of the Requirements
for the Degree of

Doctor of Philosophy

May 2016

The dissertation of Kentaro Miura was reviewed and approved* by the following:

Christopher D. Rahn
Professor of Mechanical Engineering
Dissertation Co-Advisor, Co-Chair of Committee

Edward C. Smith
Professor of Aerospace Engineering
Dissertation Co-Advisor, Co-Chair of Committee

Mary I. Frecker
Associate Department Head for Graduate Studies

Charles E. Bakis
Distinguished Professor of Engineering Science and Mechanics

*Signatures are on file in the Graduate School

ABSTRACT

Fluidic Flexible Matrix Composite (F*MC) tubes are a promising new class of high-
authority, lightweight fluidic devices that can passively provide damping and vibration
absorption. The aim of this research is to model, design, and experimentally demonstrate passive
vibration control of rotorcraft tailbooms using F"MC-based damped absorbers.

Rotorcraft tailbooms are subject to periodic excitation from the main rotor and broadband
excitation from aerodynamic forces. These excitations cause excessive driveline component wear,
structural fatigue, and passenger discomfort. Lightweight and compact passive tailboom vibration
treatments are needed to replace the heavy and bulky vibration treatments widely used in
production helicopters today. A lightweight vibration absorber can be produced by fluidically
coupling two pairs of F*MC tubes, mounted on the top and bottom of a tailboom, via an inertia
track. Partially closing an orifice in the inertia track results in a damped absorber.

To demonstrate the performance of F"MC-based damped absorbers, analytical models are
developed for a lab-scale tailboom structure and a full-scale tailboom on a Bell Helicopter OH-
58C. These models are used to design F"MC-based damped absorbers for the lab-scale and full-
scale tailbooms. Simulation results show that F°MC tubes reduce vibration at the first vertical
displacement bending mode of the lab-scale tailooom by nearly 78% for the open orifice
configuration, and increase damping by nearly 8% at the first mode. For a weight penalty of
under 4.5 kg (10 Ib), F"MC tubes are predicted to reduce vibration at the first vertical bending
mode of the OH-58C tailboom by over 96%, as well as add over 8% damping to the first mode.

A prototype F°MC-based damped absorber is installed onto the lab-scale tailboom
structure and tested to validate the analytical model. Experimental frequency responses show
good agreement with model predictions, with the experimental absorber reducing response

amplitude at the first vertical bending mode by over 70%, and a partially closed orifice adding

nearly 8% damping to the first mode. The effect of fluid pre-pressure, orifice size, and tailoboom
forcing amplitude are studied.

Design rules for F"MC-based damped absorbers are developed to enable sizing of the
F?MC tubes, as well as proper tuning of the inertia track and orifice. Guidelines are provided for
selection of F?MC tube mounting locations, bladder materials and thickness, and fluid. A fluidic
circuit with two parallel inertia tracks is proposed and analyzed for applications requiring
adjustable tuning for multiple operating conditions.

Performance-per-weight comparisons are made between F?MC-based and conventional
piston-based absorbers, as well as an active control solution. This research shows that, per added
weight, the F"MC tube outperforms conventional piston-type pumpers by almost three times.
Furthermore, on a per-added weight basis, the F2MC-absorber may outperform an active solution
using piezoelectric actuators, depending on the power limits.

Finally, ongoing and future work for a prototype absorber on a full-scale OH-58C
tailboom is discussed. In particular, static test results of a prototype absorber are presented to

demonstrate authority.

TABLE OF CONTENTS

LISE OF FIQUIES ...ttt n e vii
I 0 o] LRSS X
ACKNOWIEAGEMENTS ...ttt st be e e b et e e se e sresteebesaeeneenre e xi
(@8 T o) (= I T (T [1Tox (o o ISR 1
1.1 RESEAICN ODJECHIVEScviieieieiiee sttt 2
1.2 Vibration Control TEChNIQUES........c.coi i 2
1.3 Vibration Treatments for Helicopter Tailbooms...........cccccovveieiiiiicieieie e 4
1.4 Fluidic Flexible Matrix Composite Tubes for Tailboom Vibration Control.............. 5
1.5 CONIIDULIONS. ..ottt ettt sre et esbe e e seesreenaenne s 7
Chapter 2 Model Development for FAMC-Based Passive Tailboom Vibration Control.......... 9
2.1 FPMC-Absorber Configuration DESIGNc..c.evueveveeeereisreeeessesseeseessesseeseesssseenes 9
2.2 Tailboom Structure Model DeVelopMENT........c.covviiiiiriieieeee e 10
2.2.1 Lab-Scale Tailboom Structure Modelccooeviiiiiineneeecesce e 11
2.2.2 Full-Scale OH-58C Tailboom Model...........cccooviiiiiininice s 19
2.3 Analytical Model of Fluidic Vibration Treatmentccoceoereieiniinienene e 20
2.3.1 Dynamic Model of FIUIIC CIrCUIT.........cccoovviiiiiieresereeeee e 21
2.3.2 Model of Braid-Sheathed FIMC TUDEovvvemrermrieereneeneesesisessessees 23
2.4 Analytical Model of a Tailooom with FAMC TUDES..........cccce.everrrreerecrssieseeeinienns 25
Chapter 3 Experimental Validation of the F"MC-Absorber on a Simulated Tailboom........... 28
3.1 The Lab-Scale TailDo0OM StrUCIUIEccovveieieieiscee e 28
3.2 StatiC TAIIDOOM TESIS.....cieeeiieieiiiecie ettt 31
3.2.1 SHAtiC TESE SEANG......c.eeeireieieice e 31
3.2.2 ACLUALION TESE ...viiiiieiiiieieie ettt s 33
3.2.3 ACLUALION IMOGEL........oiiieieieece e e 34
3.2.4 Experimental ACtuation RESUILS..........ccereiiiiiiiie e 36
3.2.4 PUMPING TEST....ccviiiiteiieteiee ettt 37
3.2.5 PUMPING MOGEL ..o et 38
3.2.6 Experimental PUmPING RESUITSccoiveieiiiiiiice e 39
3.3 Benchtop FPMC TUDE TESHINGvvevveeeereeeecieeseeeeess s seesses s seesses e enes s 40
3.3.1 Benchtop TSt APPAratUScccecveiviieeiiiiieiiesiesteesiesteeteesteseesre e eesresreesaesreas 42
3.3.2 PUMPING TOSL. ittt sttt seesre e nne s 44
3.3.3 COMPIIANCE TESL.....eviiiieieieieeer et 46
3.3.4 Simulations Using Benchtop Test RESUILSccocvieeiriiiiieiiiece e 50
3.4 Dynamic Model Validation of the Lab-Scale Tailboom Structurecccceeenees 55
3.4.1 Experimental Demonstration of Absorption and Damping...........ccccceeeverienns 55
3.4.2 Pre-Pressurization and Linearity StUYcccovviirineniniieine e 59

Chapter 4 FPMC-ADSOrDer DESIGN PrOCESSc..vvuvvereeeirerresreseeesessessssnsssssessssessnsnssesenenns 63

4.1 FPMC-ADSOrbEr DESIGN PIOCESSc.ovveveeceeriiereereessieseesesssesssssessessssssssessssssssessessens 63
4.1.1 FPMC TUDE PIACEMENTeoveveevecerieveeseee st 63
4.1.2 FAMC Tube Sizing and NUMDETc.ovuieieeeeeeeeeeeseeeeeeeeeeee s 64
4.1.4 FPMC Tube Bladder Design and Fiber Winding Angleccccccoevereurrenee. 67
4.1.5 Inertia Track Dimensions, Orifice, and FIUId...........ccccvevveviiiiieiec e 69
4.1.6 Inertia Track Configuration............cccccvevueieiiicie i 79
4.1.8 DeSIgN ProCeSS SUMMAIYc.eiveruiireiereieisiesiesreseesre e eens 85
4.2 Comparison to EXisting TeChNOIOgycccoeiiiieiiiiiiiiieeee e 88
Chapter 5 Conclusions and FULUIE WOIK..........ccceiiiiiieie s 92
5.1 MaJOr CONIIDULIONSoveiieiieieiiitieie e 92
5.2.0ng0ing and FULUIE WOTKcooiiiiiiieiieieeee s 94
5.2.1 OH-58C Tailboom Model Validation and Future Improvement.................... 94
5.2.2 FUll-Scale DYNAmMIC TESESccveiieiiiiieieeite st ste et sre e re e sresra e sne s 97
5.2.3 Design Code to Minimize Weight..........cccooviiiiiiiniieieceee e 100
BIDIOGIAPNY ... s 102
Appendix A Basis Functions for a Spring-Hinged Beam - Derivation...............cccoeu.... 109

APPeNdiX B MATLAB COUEoiiiiiiiiiierieie et 111

Vi

Vil
LIST OF FIGURES

Figure 1-1. Diagram of main rotor wake-tailboom structure interaction [1].cc.ccccerenne. 1

Figure 1-2. Frequency response of baseline structure with and without an added inertia.3

Figure 1-3. Volume change in @ FAMC tUDE (@ < 55°). c.uvueeieeeereeeeseeeeeeeeeeseeeesesenese e 5

Figure 1-4. Schematic diagram of a braid-sheathed FZMC tube.ccocovveurerererereeereeeenne 6

Figure 1-5. A braid-sheathed F’MC tube attached to the lab-scale tailboom structure. 7

Figure 2-1. Coupled F2MC tubes on opposing sides of a bending structure..............ccc......... 10
Figure 2-2. A generic hinge-springed beam model of a tailboom.ccccceviiviiiiiiciens 10
Figure 2-3. Lab-scale tailDO0m StIUCLUIE.cccoiiiiiiiieeecse s 11
Figure 2-4. Internal structure of the lab-scale tailboom model [6].cccooeiiiiiiininiiee 12
Figure 2-5. Diagram of the lab-scale tailboom model. ... 12
Figure 2-6. Diagram of the full-scale OH-58C tailboom model...........c.ccocovveviiiiiiiiecieciei 19
Figure 2-7. Diagram of F°MC tubes arranged in the coupled configuration.c.......... 21

Figure 2-8. Comparison of frequency response plots using averaged and non-averaged

FlUID COMTECLION FACLOIS.eviiecie e 23
Figure 2-9. Diagram of @ FAMC tUDE.c..ovuevceereceeee e 24
Figure 3-1. F°MC tubes installed onto a lab-scale tailboom Structure.c..coceveveereenne.. 28

Figure 3-2. Schematic diagram of F°MC tubes attached to the lab-scale tailboom

STUCTUI. ..ttt ettt ettt b ekt e skt e e s h b e e et e e e bt e e eab e e e sb b e e ssbeeebe e e snbeeennneenens 29
Figure 3-3. Fluidic circuit diagram of the tailboom test stand............ccccooeveiiiniiinencncne 30
Figure 3-4. Fluidic circuit diagram for the static tailboom test..........c.cccovvviviiiiiiciiccce 31
Figure 3-5. FAMC tubes attached to the top of the tailboom structure for static testing. 32
Figure 3-6. Schematic of the cantilevered beam model with FPMC tubes..............cc.cevervvene.. 34

Figure 3-7. Theoretical and experimental tailboom tip deflections versus F"MC tube
TESSUIE. ..ttt ettt ettt ettt b ettt ettt e e e bt e s bt e sh e e sa ke e R b e e bt ekt e bt e eb e e e b b e e mb e e bt e ebe e nheenan e b nns 36

Figure 3-8. Schematic of the fluid pumping experiment fluidic CIrcuit............ccccooeverernnnne. 37

Figure 3-9. Theoretical and experimental fluid volume change versus tailboom tip

AETIECTION. ... 39
Figure 3-10. Hllustration of the effect of air bubbles in the fluid...........c.cccoveiiiiiiiie 41
Figure 3-11. lllustration of the effect of poor engagement between the bladder and fiber

TTIESIL. et b 42
Figure 3-12. Benchtop FAMC teSt SEANG.covveeieieieeseeseeseeeeseeseesesseseee s ees s 42
Figure 3-13. Photograph of the different bladders tested..............ccoviiiiiiiiiiiniie 43
Figure 3-14. Fluidic circuit diagram of the benchtop pumping test..........cccooviviiinncnennene. 44
Figure 3-15. Experimental measurements of fluid column height vs. axial displacement

for different DIAAUENS.oi i 45
Figure 3-16. Comparison of pumping coefficient for different bladders.............c.ccocevvrenne. 46
Figure 3-17. Fluidic circuit diagram for the benchtop compliance test.cccccoecevveieiennnn 47
Figure 3-18. Fluid column height vs. pressure for various bladders............ccccccovveviiiviiiiiennns 47

Figure 3-19. Experimental measurements of fluid column height vs. pressure for different
DlAAAEr MALEITAIS. ... ocvveeie ettt srenreeaenre s 48

Figure 3-20. Comparison of compliance for different bladders............ccccoeveviiiiiciiiciciienns 49

Figure 3-21. Simulated frequency response of a tailboom with F°MC tubes with 1.59 mm
(1/16 in) Polyethylene DIAder.ccooiiiiiiiieec 50

Figure 3-22. Simulated frequency response of a tailboom with F°MC tubes with 1.59 mm
(1/16 in) Masterkleer PVC BIadder.c.ooviiiiiiiiicee et 51

Figure 3-23. Simulated frequency response of a tailboom with F°MC tubes with 1.59 mm
(1716 in) Santoprene BIAAUET.cov e et 52

Figure 3-24. Simulated frequency response of a tailboom with F°MC tubes with 1.59 mm
(1/16 in) Latex RUDDEr DIAAUET.ooviiiieie e 53

Figure 3-25. Simulated frequency response of a tailboom with F°MC tubes with 0.79 mm
(1/32 in) Latex Rubber bladder.coo i 54

Figure 3-26. Theoretical and experimental frequency response of the baseline and
absorber-treated tailDOOM...........ccovi i 57

Figure 3-27. Experimental frequency response of the baseline and damped absorber-
treated tailDO0OM. ..o 58

Figure 3-28. Experimental frequency response various fluid pre-pressures.ccocoeerenene. 60

viii

Figure 3-29. Experimental frequency response of the baseline tailboom for various
FOrcing aMPIITUAES.ooveeeece e e es 61

Figure 3-30. Experimental frequency response of the treated tailooom for various forcing

AMPIITUAES. ...ttt 62
Figure 4-1. Slope of first vertical bending mode shape of the full-scale tailboom. 64
Figure 4-2. Simplified FZMC tube pumping MOdel.oovvivreeeeseeeeeeeeeeeeeee e 65
Figure 4-3. Pumping coefficient ¢3 as a function of fiber winding angle a...........c..ccccovenee. 69
Figure 4-4. Simplified mechanical analogy of a tailboom with F°MC tubes............cc.ccc........ 72
Figure 4-5. Sample frequency response of the system in Figure 4-4........c.cccocvvveveieeiveiennnns 74
Figure 4-6. Tuned OH-58C absorber for Rayleigh-Ritz series N = 1 and N = 5 using

EQS. (4.32) AN (4.33). it 76
Figure 4-7. Diagram of proposed tunable inertia track.ccccovvvveviiiiiiiev e 79
Figure 4-8. lllustration of the three parallel inertia track configurations.c..ccccceevveiennas 80
Figure 4-9. Frequency response for various orifice SEttings.c.ccooevereieinieniineneseseneenns 82
Figure 4-10. Frequency response for open Orifice 1 and partially open Orifice 2. 83
Figure 4-11. Frequency response for open Orifice 2 and partially open Orifice 1. 84
Figure 4-12. Flow chart summarizing absorber design ProCess.coceeereerienenenenieneeneenns 85
Figure 4-13. - c2¢3 as a function of FZMC tube inner radius.coceoeeveeereeeessrseereseenns 86
Figure 4-14. —c2c3 as a function of fiber winding angle...........c.cccovveviiiiiiiice e 87

Figure 5-1. Comparison of experimental and theoretical untreated OH-58C tailboom

TTEQUENCY FESPONSES. ...ttt ittt b bbbt s bbbt b nn e 95
Figure 5-2. Experimental and theoretical OH-58C tailboom static actuation curves. 96
Figure 5-3. Schematic diagram of the OH-58C tailboom test stand.ccocvvriirinenennnn. 97
Figure 5-4. Sample drawing of L-brackets used to attach F°MC tubes to the tailboom. 97

Figure 5-5. Experimental and theoretical (first mode only) mode shapes of the OH-58C
TAIIDOOM. ..o 98

Figure 5-6. Simulated OH-58C frequency response plot with and without F°MC tubes......... 99

Figure B-1. Overview of the MATLAB COde SIrUCIUIE.c.covveieeii e 111

Table 2-1.

Table 3-1.

Table 3-2.

Table 3-3.

Table 3-4.

Table 3-5.

Table 4-1.

Table 4-2.

Table 4-4.

Table 5-1.

LIST OF TABLES

Lab-Scale Tailboom Test Stand Parameters.ccoouvvrenereneiesiesesese e 18
Static Tailboom Test Stand Parameters.covvereieiereieeee e 33
List of bladder materials teSted.oovriiiiiiiiiie e 43
Summary of benchtop pumping and compliance test results.ccccecvvviviernenne. 49
Absorber parameters used for the dynamic tests.coverereieiiininese e 56
Summary of absorber and damped absorber performance.c.ccccoovevviviiieenne. 59
Inertance tUNING ESHIMALES.ccvveie i s 76
Inertia track dimensions used for tunable inertia track study.cc.ccovveieniennne 82
Efficiency of Various PSU Tailboom Vibration Treatments...........ccocoevvenerenne. 90
Summary of proposed full-scale absorber parameters...........ccocveveveiieeveiecviennene. 98

Xi

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my advisors, Dr. Christopher Rahn and
Dr. Edward Smith, for their patience, invaluable guidance research-related and not, and for
showing me how to calmly approach problems. | could not have asked for better advisors. My
gratitude extends to my committee members, Dr. Mary Frecker, Dr. Charles Bakis, and Dr. Eric
Mockensturm, whose insightful comments and questions have helped me in my research and
dissertation writing.

My research would not have been possible without the financial support provided by Bell
Helicopter, the Bell Graduate Fellowship, the College of Engineering Fellowship, and the U.S.
Army Research Laboratory via the American Society of Engineering Education and the Oak
Ridge Institute for Science and Education/Oak Ridge Associated Universities. The technical
guidance | received from Peter Romano, Michael Seifert, and Dr. David Heverly from Bell
Helicopter, as well as Dr. Hao Kang from the Army Research Laboratory, was critical to the
success of this Ph.D. project. | am deeply indebted to Dr. Bin Zhu for his friendship and for being
my F?MC mentor, as well as to Matt Krott and Steven LaBarge for their significant contributions
to the PSU tailboom experiment. | also could not have asked for better friends and labmates: Dan
Aglione, Alexandre Bondoux, Chris Ferone, Mayank Garg, Nicolas Kurczewski, Jun Ma,
Xiaokun Ma, Kiron Mateti, Chris Melville, Githin Prasad, Chinmay Rao, Mike Robinson, Tahzib
Safwat, Lloyd Scarborough, Zheng Shen, Ying Shi, Tanvir Tanim, Shawn Treacy, and Andrew
Wilson.

I thank Francesco Acciai for being an endless source of humor and a good sport, and
Jeremy Horwitz for his willingness to listen and help me organize my thoughts. Last but not least,

to my family: thank you for your unconditional support and encouragement.

Chapter 1

Introduction

Rotorcraft tailbooms are subject to periodic and broadband excitation. As illustrated in
Figure 1-1, harmonic aerodynamic forcing can result from trailing vortices from the main rotor
interacting with the tailboom and structures such as the horizontal stabilizer [1]. Broadband
excitation is caused by maneuvers, wind gusts, and separated flow behind the rotor hub [2]. Due
to the low inherent structural damping in the tailboom, these excitations cause high vibration and
slowly decaying transients that decrease fatigue life and damage electronics. Vibration-induced
structural fatigue increases maintenance costs and reduces vehicle availability [3]. Despite
previous research on tailboom vibration reduction techniques [2, 4-6], heavy and bulky treatments
remain the typical standard used in many production helicopters.

I upper portion vortices
interactional

_____ : lower portion vortices occurences

*Iateral portions of effective extent of wake
wake considered to over which elements
constitute the far wake interact with stabilizer

Figure 1-1. Diagram of main rotor wake-tailboom structure interaction [1].

1.1 Research Objectives

The aim of this research is to model, design, and demonstrate the performance of a
lightweight passive fluidic vibration treatment for structures using Fluidic Flexible Matrix
Composite (F’MC) tubes. To that end, a mathematical model of a tailboom with F*MC tubes is
developed and implemented in MATLAB. This MATLAB model is used to propose F"MC-based
vibration absorber designs for two test bed rotorcraft structures: a simulated lab-scale tailboom
and a full-scale OH-58C tailboom. Prototype absorbers are fabricated and installed onto the test
bed structures, and experiments are conducted to demonstrate performance. To validate the
model’s predictive capability, numerous system parameters including fluid pre-pressure, orifice

size, and tailboom forcing amplitude are varied and compared against theoretical predictions.

1.2 Vibration Control Techniques

The three main types of vibration control are isolation, damping, and absorption.
Vibration isolators reduce load transmission to a system, and are typically placed between the
system and the excitation source [7]. Comprising a load-supporting component and an energy-
dissipating component [8], the most basic isolator uses a spring and dashpot placed in between
the system and the ground. More sophisticated isolators like the Dynamic Antiresonant Vibration
Isolator (DAVI) [9] use a tuned mass to provide an inertial force that counteracts vibration at a
desired frequency. As in the Liquid Inertia Vibration Eliminator (LIVE®) device [10] and
Fluidlastic technology developed by LORD Corporation [11], the inertia may also be provided by
inertance resulting from fluid accelerated through an inertia track.

Dampers convert or dissipate energy to reduce vibration. The typical mechanism of

mechanical damping is friction, for example between solids or fluids [12]. Damping can be

achieved through viscoelastic layers [13], piezoelectric shunt circuits [14], fluid dampers, eddy
currents, hysteretic elements, and by dissipating energy through dynamic vibration absorbers
[15], among other techniques.

Absorbers, which use the inertial effects of a mass added to the vibrating system to
counteract vibratory excitation, have been developed by numerous researchers [16-19]. A tuned
absorber produces an anti-resonance, flanked by two resonant peaks, in the structure’s frequency
response [20]. As illustrated in Figure. 1-2, the absorber adds an anti-resonance flanked by two
resonance peaks to the system’s frequency response. The heavier the added mass relative to the
structural mass, the wider the resulting anti-resonance [2] and the broader the frequency range
over which response amplitude is attenuated. Adding damping to the absorber results in a damped
absorber or tuned mass damper, which reduces the amplitudes of the resonant peaks at the

expense of increasing the anti-resonance amplitude [21, 22].

"1 Frequency ',
-80| ~ | range of i
Y I attenuation
-90 ;

-100 ..

1
I
|
I
P
I
1

-110

.120- |—— Baseline Structure !

Response Amplitude [dB]

---------- Structure with Absorber
-130- '
-140+ ? '

r

7 9 11 13 15
Frequency [Hz]

Figure 1-2. Frequency response of baseline structure with and without an added inertia.

4
Absorbers, which are the focus of this research, can be implemented passively, actively, or semi-
actively [23]. Passive absorbers are tuned to reduce response over a specific range of operating
conditions. Requiring no external power [24] or sensing, passive vibration absorbers are typically
more easily retrofitted to existing structures compared to active or semi-active devices. Active
absorbers use feedback from sensors to actuate the structure to cancel out the effects of vibratory
excitation [6]. Active approaches outperform passive techniques but are more complex and
costly, and therefore less reliable [25]. Semi-active control uses feedback to modify properties of
the absorber itself to adapt to different operating conditions [26, 27]. While earlier passive, active,
and semi-active vibration absorbers used mechanical masses and springs [16-19], more recently
researchers have developed designs using other means, such as smart materials,
magnetorheological fluids, and resonant circuit shunting [6, 28-33]. The inertance resulting from

fluid motion may also be harnessed for vibration control [10, 11, 34, 35].

1.3 Vibration Treatments for Helicopter Tailbooms

Researchers have previously studied various approaches to reducing vibration in
rotorcraft tailbooms. Heverly et al. demonstrated active control of a lab-scale tailboom structure
by replacing a segment of the stringers with piezoelectric actuators [36]. Similar approaches using
actuators and sensors distributed throughout the airframe have been proposed [37, 38]. Bansemir
developed a passive tailboom vibration treatment using weights attached to elastically deformable
walls within the tailboom [4]. Gaffey et al. proposed a nonlinear pendulum-like absorber with a
mechanism to improve the frequency range of the anti-resonance [39]. Passive piezoelectric
absorbers have also been put forth [37]. Vuillet and Zoppitelli designed an absorber that uses

fluid sloshing inside a chamber in the tailboom to reduce vibration [40].

1.4 Fluidic Flexible Matrix Composite Tubes for Tailboom Vibration Control

Fluidic Flexible Matrix Composite (F*MC) tubes are a new class of high-authority and
low-weight fluidic devices that can passively provide vibration damping [41], absorption [42, 43],
and isolation [44]. The FAMC tube, shown in Figure 1-3, is constructed from a highly anisotropic
Flexible Matrix Composite (FMC) laminate [45]. Two families of interlocking fibers in the
laminate form winding angles ta with respect to the longitudinal axis. For winding angles less
than 55°, tensile axial stress causes volume decrease, and compressive axial stress causes volume
increase, as illustrated in Figure 1-3. When filled internally with fluid, F°MC tubes under loading
act as fluid pumps. The constraining effect of the fibers allows the FZMC tube to pump up to two
orders of magnitude more fluid per unit axial strain than can a piston of the same diameter [46].
The F*MC tubes pump fluid into an external fluidic circuit consisting of an inertia track and an
orifice. With a small-diameter inertia track and through the pumping amplification of the tube
fibers, a small mass of vibrating fluid can provide the same effect as a large inertia. Flow

restriction due to the orifice, as well as losses in the inertia track wall, contributes to damping.

neutral state

Figure 1-3. Volume change in a F"MC tube (a < 55°).

F?MC tubes can be constructed by filament-winding carbon fibers in a soft matrix
material such as polyurethane [45] (filament-wound tube) or by placing a rubber bladder inside a
fiber-wound tube [44] (braid-sheathed tube). Filament-wound tubes are desirable as various tube
properties such as fiber winding angle can be precisely controlled and custom-made. However,
braid-sheathed F°MC tubes are used in this work for their ease of construction and their
analogous behavior to filament-wound tubes. Each braid-sheathed F°MC tube is constructed of a
stainless steel braided mesh and a rubber bladder. They are similar in construction to McKibben
actuators except that, as illustrated in Figure 1-4, the mesh and bladder are independently fastened
to end fittings that mechanically connect and fluidically seal the F*MC tube (pictured in Figure 1-
5), respectively. Unlike the typically pneumatically actuated McKibben muscles, these devices

are used passively and use a liquid as the working fluid instead.

Crimp Sealing clamp Stainless Steel Mesh
To inertia \ | / 3

I
/ —'=— 3———_-1
Mechanical Effective length
thread ¢ R
Total length

Figure 1-4. Schematic diagram of a braid-sheathed F"MC tube.

B el

S:t\@ess steel |
fiber mesh

To fluidic
circuit

Sealing clamp Hydr;ulni‘crcrimp 3

Figure 1-5. A braid-sheathed F°MC tube attached to the lab-scale tailboom structure.

Nonlinear models of F2MC tube behavior have been developed by several researchers
[45, 47]. Zhu et al. studied F2MC tubes embedded in a relatively rigid matrix and properties such
as fluid pumping and actuation ability [46, 49]. Lotfi-Gaskarimahalle et al. showed that the fluid
port connecting to an F2MC tube can be designed to reduce vibration at a desired frequency [43].
Additional studies on characterizing F’MC tubes and applying them to structures have been
carried out [50, 51]. There have also been numerous studies specifically on passive vibration
control using F"MC tubes. Zhu et al. demonstrated analytically that F"MC tubes attached to a
cantilever beam can absorb beam vibration [42], and confirmed experimentally that a tunable

orifice in the flow port can be used to provide damping [41].

1.5 Contributions

This research is the first instance in which a F"MC-based absorber has been designed for
a lab-scale aerospace structure. A new configuration of FMC tubes is explored in which F"MC

tubes on opposing sides of a bending structure are coupled fluidically. In contrast to the device

demonstrated by Zhu et al. [41, 42], the coupled F’MC tubes do not require a separate fluid
accumulator. Miura et al. demonstrate the feasibility of passively reducing vibration in helicopter
tailbooms using such a configuration [52], with simulation results predicting over 10% damping
added to the first bending mode. A model of braid-sheathed F"MC tubes developed by
Scarborough et al. [44] is modified, in the same fashion as Shan et al. for filament-wound tubes
[48], to account for compliance in the inner bladder wall. The actuation and pumping ability of
the F°MC tubes are demonstrated through static tests on a lab-scale tailboom structure [53].
Static component-level tests further characterize the F°MC tubes’ pumping ability and
compliance [54]. Dynamic tests on the lab-scale tailboom structure show that a F*MC-based
absorber weighing only 2.7 kg can reduce response amplitude by over 70% at the first bending
mode, and that a partially closed orifice augments structural damping by nearly 8% [55].
Furthermore, the model predictions are shown to correlate well with experimental results. A
novel absorber configuration using F’MC tubes is presented, and a model of a tailboom treated
with such an absorber is derived in Chapter 2. Chapter 3 introduces the lab-scale tailboom
structure used to test the absorber performance. Experimental results validating the model
developed in Chapter 2 is presented. Design considerations and process for F"MC-based damped
absorbers are detailed in Chapter 4. The design rules presented provide an excellent estimate of
the optimal absorber parameters on simple SDOF structures. For more complex structures, the
estimates are reasonably accurate and significantly reduce the optimal parameter search space. A
tunable absorber using two inertia tracks in parallel is proposed and shown to allow absorption at
one of two distinct frequencies, or a combination of partial absorption at both. The performance
per weight of the F°MC-absorber is shown to be three times that of a piston-based absorber, and,
depending on power requirement, exceed a piezoelectric active controller’s. Finally, work in

progress for a test on the OH-58C tailboom is summarized in Chapter 5.

Chapter 2

Model Development for FAMC-Based Passive Tailboom Vibration Control

The coupled F*MC tube vibration absorber configuration is proposed. Analytical models
for the two test bed structures, the lab-scale PSU tailboom and the OH-58C tailboom, are then
developed. A modified model of braid-sheathed F*MC tubes connected in the proposed absorber

configuration is presented. Finally, the fluidic model is integrated into a generic structural model.

2.1 FAMC-Absorber Configuration Design

A FMC-based vibration absorber for a beam-like structure like a helicopter tailboom can
be implemented as the coupled F2MC configuration shown in Figure 2-1. In this configuration,
pre-tensioned tubes are attached on opposite sides of the tailboom’s neutral axis and connected by
an inertia track. The tubes and inertia track are filled with a working fluid. As the tailboom bends
and vibrates, tubes on one side contract while the tubes on the opposite side elongate. This axial
displacement results in volume change in the FMC tubes, accelerating the fluid back and forth
between the tubes as the structure vibrates. Unlike previously tested designs, which relied on a
separate fluid accumulator to provide a restoring force to the fluid, this configuration utilizes two

pairs of “push-pull” F°MC tubes.

10

Attachment points

) oo — .. _ . Tunable orifice ~
“~TBeam bending plane hX

e

FMC tube Inertia track

Figure 2-1. Coupled F2MC tubes on opposing sides of a bending structure.

2.2 Tailboom Structure Model Development

A beam model of a helicopter tailboom is developed to determine the feasibility of
F2MC-based vibration treatments for rotorcraft structures. The tailboom structures are
approximated as beams attached at the root to a wall by hinge-springs, as shown in the generic
tailooom model diagram in Figure 2-2. The hinge and torsional spring at the root model
compliance at the attachment, and the spring constant is determined using static stiffness
measurements of the tailboom. Discrete masses are used to represent tailboom components and

other airframe structures.

m: discrete mass

Hinge + torsion spring I:y

Figure 2-2. A generic hinge-springed beam model of a tailboom.

11

2.2.1 Lab-Scale Tailboom Structure Model

A lab-scale 1/3 scale model, pictured in Figure 2-3, of an Apache AH-64 is used as a test
bed for the F°MC-based absorbers. The tailboom is an aluminum, 72 in long, semi-monocoque
structure cantilevered to a rigid frame. The tailboom cross-section is linearly tapered, and
aluminum sheet metal skin is attached to eight stringers with a total cross-sectional area of 766
mm?, as shown in Figure 2-4. The four corner stringers are aluminum angles that are 20.6 mm
(0.8125 in) by 20.6 mm and 3.18 mm (0.125 in) thick. The side and top stringers are 28.6 mm
(1.125in) by 3.18 mm (0.125 in). Masses and hollow aluminum tubing attached to the tip of the
tailooom simulate vertical and horizontal tail surfaces. Detailed drawings with dimensions can be

found in Heverly’s dissertation [6].

B
| Tail Structure Base

. Tailboom .

- .

Figure 2-3. Lab-scale tailboom structure.

12

Figure 2-4. Internal structure of the lab-scale tailboom model [6].

1,3: vertical fin
2: horizontal fin y(t)T_

m: frame mass

'—i /I\
Hinge + torsion spring |:y
Figure 2-5. Diagram of the lab-scale tailboom model.

The lab-scale tailboom is modeled as a spring-hinged beam with discrete masses and
springs to represent various tailboom components and structures, as shown in Figure 2-5. In

response to vertical tip load F,,, the tailboom vibrates with vertical displacement w(x, t), the

13
horizontal fin with vertical displacement y(t), and the vertical fin with angle 6(t). m, is the
vertical fin tip mass, and mg is the mass of the vertical hollow tube. m, is the effective mass of
the horizontal fin. mg represents the mass of the frame structure inside the tailboom. k is the
effective linear spring constant of the horizontal fin, and K; is the effective torsional spring
constant for the vertical fin. [,, is the length of the vertical fin.

The Rayleigh-Ritz method is used to approximate the tailboom displacement

N
WO = Y hi@a® = HE)) @D
i=1

where 1; (x) are the Ritz basis functions and g;(t) are the generalized coordinates. Basis
functions for a spring-hinged beam, derived in Appendix A, are used, and the spring stiffness is
determined based on static deflection measurements. Power Py, into the tailboom due to tip load
F, is given by

Py = E,w(L), (2.2)
where L is the length of the tailboom and () denotes a derivative with respect to time. Defining

the state vector

{a}
{n}= { y } (2.3)
6
and substituting in Eq. (2.1), Eq. (2.2) becomes
{¥.}
Py = {ﬁ}T[0 |5, (2.4)
0

where ;, = Y (L).

14

Assuming no losses, power into the tailboom is equal to the time derivative of the total energy:

a1t S T ST S B S,
P; = Efo w pAdx+§mst +Em1v1 +Em2y +Em3v3 +EL EI(w'")*dx

(2.5)

2RO~ W) + 3 K0 w2,
where p is the tailboom density, A is the tailboom cross-sectional area, E is the tailboom elastic
modulus, I is the tailboom area moment, w;, = w(L), V1 3 gnq 3 are the velocities of m; ; 443,
respectively, and ()’ indicate derivatives with respect to position x. The velocity vector of m,
is

vy = (—1,0sin(8 +)i + (w, + 1,0 cos(6 + 7))j, (2.6)
where y is the nominal angle formed between the vertical stabilizer and the x-axis. Similarly, the

velocity vector of ms is

— l1] A . N . lv A N

vg = (—39 sin(6 + y)) i+ (WL + 59 cos(8 + y)>]. 2.7)
The angular deflections of the tailboom tip and vertical stabilizer are relatively small. Since under

the small-angle approximation y > 6 and y > wy, cos(6 + y) = cosy. Thus, Egs. (2.6) and

(2.7) are rewritten as:

v? =126% + w,? + 21, cosy w0 (2.8)
and
1262 :
vi= 1;4 + w2 + 1, cosyw,. (2.9)

The time derivatives of the kinetic energies of masses m, and m are therefore:

d /1 . . .
= <§m11712) = my (1260 + wi,w,, + L, cosy w0 + I, cosyw, 6) (2.10)

and

15

J (1 12 2 oo Ly . Ly . a5
a(57)'1_31]??) =ms (ZQQ +w,wy + ;COS)/WLQ + ;COS]/WL 9) (211)

Substituting Egs. (2.10) and (2.11) into Eqg. (2.5), we obtain:
L e o . ..
P, = f WpAwdx + mgwews + my (1260 + Wy, + 1, cosy w0 + I, cosyw, 6)
0

2. . l o1 .
+myyy +ms <Zy 006 +w,w; + EvcosyW'LG + %cos YWy, 9)
(2.12)

L
+ j Elw'w"dx + k(yy —yw, —wy + wyw;)
0
+ K. (660 — 0w —w[0 +wiw',).
Recalling Eqg. (2.1), the vertical displacements w can be written in matrix form. The first term of

EqQ. (2.12) becomes

L L
[woinax = @y (| pA{w}{w}de> @, (2.13)
0 0
and the second term becomes

MmsWsWs = {q}Tms{lps}{lps}T{q} (2.14)
In a similar fashion, the other terms of Eq. (2.12) can be rewritten in matrix form and in terms of

the state vector from Eq. (2.3) as follows:

10
P, = 20t [} (Ap + meAg + Ay + mpA) (3} + (03T (Bo + KBy + kBy){n}], (2.15)
where
L [y {0} {0}
Ay = f pA| {0}T 0 0 |dx, (2.16)
0 {0}" 0 0

Wiy {0} {0}
A= {0} 0 0| (2.17)
{0}" 0 0

16

(my +ma){y)" {0} mysl,cosy {y,}
A, = {0y 0 o (2.18)
myzlycosy {Y,)" 0 1z (m1 + 73)
[0] {0} {0}
A, =07 1 o], (2.19)
07 0 o0
L [W"Hy"y {0} {0}
B, = f EIl {0)T 0 0 |dx (2.20)
0 {0}” 0 0]
w3t {0} —{y}]
B, =| {0}7 0 0o | (2.21)
—{3¥ 0 1
and
Wy) {0} (2.22)
B, =| —{y.}" 1 01,
{0}7 0 0

where m;; = m,; + m3/2. Evaluating the time derivative in Eq. (2.15) and setting the result

equal to Eq. (2.4) yields:

{Y1}
{ny" [0 |F ={n}" (Ao + msAs + Ay + myAr) (i}
0 (2.23)
+ {1} (By + K¢ By + kB;){n}.
Eliminating [56] the common term {r}" from Eq. (2.15) gives
(Wi})
0 Fy = (AO + mSAS + A1 + mzAz){n} + (BO + KtBl + sz){T]} (224)
0
More compactly, Eq. (2.24) may be expressed as
[Mers |G} + [Cors |0} + [Kepr(n} = {Fers), (2.25)

where [Mgsr], [Cesrl, and [Kef 5] are the mass, damping, and stiffness matrices, respectively, and

{Ferr} is the generalized forcing vector. The matrices in Eq. (2.25) are

[M] {0} mysl, cosy{y,}
T
[Mefr] = 0} i °
my3l, cos y{ll)L}T 0 (ml + _123) 15

where

L

M, = f PAY i + (my + M), (L (L) + meth; (eI (xs)
0

and x; is the longitudinal position of mass m,

(K] —k{y,} —K{y}
[Kerr] = | =k} k 0 ,
—K {1}" 0 K

where

L

Ky = fo EIY" " el + Ketp (LY (L) + ki (LY (L),
and
{W.}
{Feff} =1 0 |B.
0
2¢w,
[Ceps] = [@] [@]7,
2wy

17

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)

where [®] is the modal transformation matrix, w,, are the natural frequencies, and ¢ is the modal

damping ratio, which is obtained by applying the half-power method to the experimental

frequency response plot of the tailboom structure. In state-variable form, Eq. (2.25) can be written

as

{21} = {z,}

_ -1 _
{23} = ~[Megs] " [Keplzd = [Meps] [Coprllzad + [Meps]™ {Fers}

where

(2.31)

and

{q}
{z,} = [y]'

0

{4}

{z}=|v

6

18

(2.32)

(2.33)

The parameter values of the lab-scale tailboom test stand are summarized in Table 2-1.

Table 2-1. Lab-Scale Tailboom Test Stand Parameters.

Characteristic Imperial Metric
Length 72in 1.83m
Base Width 14.25in 0.362m
Base Height 11.26 in 0.286m
Tip Width 7.4 in 0.188m
Tip Height 7.4 in 0.188 m
Skin Thickness 0.028 in 0.7 mm
Vertical Fin Length 33in 0.837m
Horizontal Fin Length 389 in 0.99m

my 12.51b 5.68 kg
m, 151b 6.81kg
ms 9.85 b 447 kg
mg 0.44 lb 0.2 kg
k 360 lb/in 63000 N/m
Ke 4 x 109 195 45x 105
) rad rad
Root Spring Constant 27 % 104@ 3 % 10 N-m
rad rad
Tailboom Weight 60 b 272 kg

Natural Frequencies
Damping Ratio

12.3 Hz,21.8 Hz

19

2.2.2 Full-Scale OH-58C Tailboom Model

The full-scale tailboom model is derived in a similar fashion to the lab-scale tailboom

structure model. The beam model is illustrated in the diagram in Figure 2-6.

Tailboom skin

m,: aft end components
Hinge + torsion spring m,: horizontal stabilizer

Figure 2-6. Diagram of the full-scale OH-58C tailboom model.

The beam model is developed using representative mass, damping, and flexural rigidity data
provided by the manufacturer, Bell Helicopter. The tailboom data is omitted due to its proprietary
nature. Mass m; represents the gearbox at the tip of the tailboom, and mass m., simulates the
effect of various structural components in the tailboom, including the horizontal stabilizer.
Lacking the large inertias seen in the vertical and horizontal stabilizers of the lab-scale tailboom
structure, the OH-58C tailboom model has two fewer degrees of freedom. Thus, the governing
equations are of the form

[MI{G} + [Cl{q} + [KI{q} = {F}, (2.34)

where

L
M, = j P pndx + Mt (L (L) + mah; () (62), (2.35)
0

L

K = f EIY" 3" dx, (2.36)
0

20

20w,
[C] = [@] [®]7, (2.37)
2wy
and
{1}
(F} = [0 |E. (2.38)
0

As with the lab-scale tailboom, basis functions 1;(x) for a hinge-springed-free beam are used,
with the root spring constant determined empirically. In state space form, Eq. (2.34) becomes
{21} = {z;}
{22} = —[M]7 [K]{z,} — IM]T[CHz} + [M]HF},

where {z,} = {q} and {z,} = {¢}.

(2.39)

2.3 Analytical Model of Fluidic Vibration Treatment

Firstly, the fluidic circuit model is introduced for the coupled F?MC tube configuration.
Secondly, a modified version of the braid-sheathed F"MC tube model by Scarborough et al. [44]
is presented and combined with the fluidic circuit model to produce the F°MC absorber model.

Finally, the absorber model is incorporated into a generic structural model.

21

2.3.1 Dynamic Model of Fluidic Circuit

Figure 2-7 shows four F2MC tubes, of the type shown schematically Figure 2-8, arranged

in the coupled configuration.

Q:
—< Top F°MC tubes

.. 5|
1 InertiaTrack

Tunable Orifice

Bottom F°MC tubes >—

Figure 2-7. Diagram of F?MC tubes arranged in the coupled configuration.

In the coupled configuration, pairs of F°MC tubes are attached to the top and bottom surfaces of
the tailboom. The top and bottom tubes are interconnected using an inertia track with a tunable

orifice. As the tailboom vibrates, the top and bottom pairs of F"MC tubes generate equal and

22
opposite gauge pressures p that drive flow through the interconnecting inertia track. The
volumetric flow rate Q through the inertia track is governed by

I:Q +RQ =p— (-p) = 2p, (2.40)

where inertance I is given by

_Prly
=z (2.41)
and resistance R by
8ul
R=—CFagr+ R (2.42)

T[T'p
where n,is inertia track inner radius, L, is inertia track length, p; is fluid density, p is fluid
viscosity, and R, is orifice resistance. Since flow inertance and resistance in the inertia track
vary with oscillation frequency, they must each be multiplied by correction factors a; and ay,
respectively. a; p vary with frequency and are determined using plots generated by Donavan et al.
relating the correction factors to non-dimensional frequency-dependent parameters. Without the
correction factors, inertance would be under-predicted by about 30% and resistance by an order
of magnitude for the frequency regime of interest. While this frequency-dependence presents an
inconvenience (the system must be simulated at each frequency point to obtain a frequency
response plot), the variation in resistance and inertance across a narrow frequency range is
typically small. For instance, for the tailboom discussed in Chapter 3, the change in inertance
over 6 Hz is negligible, and the increase in resistance is 20%. So, in practice one can use a values
in the middle of the frequency range or take an average. The validity of this approximation can be
seen in Figure 2-8, in which a plot using this approximation is compared to a plot resulting from
calculating a at each frequency. By inspection, the differences between the frequency responses

are negligible.

23

-80 L |8 L L L
m
S, -85 d
()]
o
o -90 .
LL
(@
= -95 .
£
D) -100; 7
]
2 .105 1
S — Tailboom \
§ 110~ | e Using |,R(12 HZ)
""" ing |,R(f
£ s Using LR()
N2
QO
9 '120ﬁ
=
_125 r r r r r
9 10 11 12 13 14

Frequency [HZz]

Figure 2-8. Comparison of frequency response plots using averaged and non-averaged fluid
correction factors.

2.3.2 Model of Braid-Sheathed F’MC Tube

The tensile axial load F, acting on the F°MC tube shown schematically in Figure 2-9 is
C1xe + Cp = F, (2.43)

and the volumetric fluid flow rate contributed by the F"MC tube is

. .0
TC3Xe — P = == Q¢ (2.44)
14

24
where positive x, indicates tension of the bottom FMC tube, p is the internal fluid pressure, and
positive Q describes fluid flow from the bottom to the top tubes in response to positive w(x, t), or
upward tailboom bending. c; ., are FPMC parameters determined by the tube’s dimensions,
material, and fiber winding angle [44, 55]. c¢;_, are computed numerically. c; may be calculated
or measured. The empirically determined parameter c, represents compliance in the F"MC tube
walls. All four parameters except c; are positive. Although the prior braid-sheathed model
neglected compliance effects [44], experiments described in Chapter 3 reveal that compliance has
a significant effect on the absorber behavior. Thus, Eq. (2.44) contains the term c,p to capture the
tube compliance effect. (Such a correction was made by Shan et al. to the filament-wound model

previously [48].)

W(Xq,1) Wil o R

Tailboom neutral axis

Figure 2-9. Diagram of a FMC tube.

Taking the Laplace transform of and combining Egs. (2.40), (2.43), and (2.44) gives the
transfer function from axial displacement to axial load

F.(s) _ N;s®+ N;s + N,
Xc(s) Irs?+Rs+Dy’

(2.45)

where

)
NpCy

ny, is the number of tubes per side, F.(s) = L[F(t)], and X, (s) = L[x.(t)].

In state space form, Eq. (2.45) becomes
. —R/I; —Dy/I 1/1
{23}:[1/f OO/f]{Z3}+[éf]xt

= [Al{z3} + [B:]xy,

and

= [Cl{z3} + [D¢]xy,

where {z3} is the state vector of the fluidic system.

2.4 Analytical Model of a Tailboom with F"MC Tubes

As fluid pressure develops inside the F°MC tube, the tube exerts a force onto the

25

(2.46)

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

tailboom surface to which it is attached. As the F?MC tube is offset from the tailboom neutral

axis, the tube effectively applies a moment onto the tailboom. Thus, to couple the fluidic and

structural models together, Eqg. (2.30) is modified to account for the influence of the moments

exerted by the F2MC tubes onto the tailboom structure. When the tailboom bends, a tube below

the tailboom centroid has the strain

26

62
e = d(¥) 5 = AWV (g} (252)

where d(x) is the vertical distance between the tube centroid and the tailboom neutral axis. Thus,

for an F2MC tube attached at longitudinal positions x; and x, > x;,

Xy = < f 2al(%) {l/)"}de> {q} ={d:}"{z1}, (2.53)
where
IREXEE
{d} = | | (2.54)
0
| 0 |
Substitute Eq. (2.53) into Egs. (2.50) and (2.51):
{25} = [BJ{d} {21} + [Ac){z3} (2.55)
and
Fe = [D{d} {21} + [C{z3}. (2.56)
The generalized forcing vector from Eqg. (2.30) becomes
L}
{Feff} =| 0 |F —2npF{dap21}, (2.57)
0
where
d(x){Y' (x2)} — d(x){W' (x1)}
{21921} = [0 : (2.58)
0
Substituting Eg. (2.56) into (2.57) gives
{¥.}
{Ferr} = [0 |F — 2ny{da1ps1}(ID A} 21} + [Col{z3)). (2.59)
0

27

Substitute Eq. (2.59) into (2.31) to obtain

(22} = ~[Meg] " [20 DAz W51 1) + [Keps]] (21} = [Megf] ™ [Corrliza}

(2.60)
- an[Meff]_l{dz1¢§1}[ct]{23} + [Meff]_l{Feff}-
Let
Ba = _[Meff]_1 [an[Dt]{d21¢é1}{dt}T + [Keff]] ’ (2.61)
Bo = ~[Megs] " [Cers] (2.62)
and
By = —2mp[Meps] ™ {dpa 5 }IC]. (2.63)
The coupled fluidic and structural equations are
{z,} [0] (1] [0] | [{z3]| [{0O}
{Z3[=| [Bal [Bb] [Bul]|{z2}| + [{U}|E,. (2.64)
{zs}] |[Bd{dd™ [0] [Acd]|{z3}] |{O}
The tailboom displacement output
{z1}
w(x, t) = [{w()}" {0}7]]{z2}]. (2.65)
{25}

The state space model of a tailboom with F°MC tubes comprises Egs. (2.64) and (2.65). This
model is implemented in MATLAB for both the lab-scale tailboom structure and for the OH-58C

structural model (see Appendix B).

28

Chapter 3

Experimental Validation of the FXMC-Absorber on a Simulated Tailboom

The model developed in Chapter 2 is validated experimentally on the lab-scale tailboom
structure. The experimental test stand is first introduced. Then, results of static actuation and
pumping tests are presented, followed by benchtop component-level testing results. Finally, the
dynamic response of the treated and untreated tailboom is measured and showed to correlate with

theoretical predictions.

3.1 The Lab-Scale Tailboom Structure

The lab-scale tailboom structure described in Section 2.2.1 is fitted with four FMC tubes
(two on top, two on bottom) and an accompanying fluidic circuit. The test stand is pictured in
Figure 3-1.

7’?; Laser Tail S:tructure ‘"Invertia Track
Vibrometer

Top F2MC Tubes

Figure 3-1. F"MC tubes installed onto a lab-scale tailboom structure.

29
The tailboom structure is cantilevered to a heavy mount on a vibration table. A shaker is used to
vertically excite the tailboom at the tip. The vertical tailboom tip response is measured using a
laser vibrometer. As illustrated in Figure 3-2, pairs of prototype FZMC tubes are attached to the
top and bottom surfaces of the tailboom. One end of each F°MC tube is anchored to the base of
the cantilever, and the other is attached to aluminum L-brackets bolted to the tailboom 0.56 m (22
in) from the base. For ease of installation and observation, the F°MC tubes are offset 25.4 mm (1
in) from the tailboom skin. The distance between the end fittings (i.e. the effective length of the

F?MC tubes) is 0.38 m (15 in), as illustrated in Figure 1-4.

Horizontal Fin

Top L-Bracket

_ e
~_JI0 / __l
Tailboom Top View { FJ 1
q\ JJ |
Vertical Fin
Base Top F2MC Tubes
- % L-Brackets
Tailboom Side View
— - Shaker
Bottom FZMC Tubes Force

Figure 3-2. Schematic diagram of F"MC tubes attached to the lab-scale tailboom structure.

30
The F*MC tubes are connected to the fluidic circuit, shown schematically in Figure 3-3,
which includes a fill valve, bleed valve, tunable orifice, and an inertia track. The circuit is filled
by pumping fluid through the fill valve, the lowest point of the circuit, and bleeds air out of the
bleed valve, the highest point. As evident in Figure 3-1, the inertia track monotonically increases
in height from the fill valve to the bleed valve. This is to ensure that air bubbles, which are shown
in Section 3.3 to affect absorber performance negatively, do not become entrapped in the fluidic

circuit and to facilitate removal of bubbles from the fluid.

|

—< Top F°MC tubes D><
Bleed Valve

|

S Inertia Track

Tunable Orifice

|

>< Bottom F°MC tubes >—
Fill Valve

i

Figure 3-3. Fluidic circuit diagram of the tailboom test stand.

31

3.2 Static Tailboom Tests

Two series of static tests are performed to characterize the F2MC tube pumping and
actuation capability. In order to damp vibration, the F’MC tubes must be able to pump fluid when
the tailboom vibrates and actuate tailboom displacement when pressurized. Thus, a solid
understanding of the static behavior is needed before damping performance can be demonstrated
experimentally. The static pumping and actuation experiments are described and their respective
equations derived. Experimental measurements of the tube volume change due to imposed
tailooom displacement, as well as tailboom tip displacement in response to tube pressurization,

are presented.

3.2.1 Static Test Stand

The static tests require a modified version of the fluidic circuit, shown in Figure 3-4. The

prototype F°MC tubes used are pictured in Figure 3-5.

Pressurized L] Inertia Track

ar Fill Valve Tunable Orifice (closed)

(closed)

‘:’X\X

. —, Bottom F°MCtubes —

X

Pressure Valve (open)

\

Figure 3-4. Fluidic circuit diagram for the static tailboom test.

32

= 0.254 m

L-bracket

Figure 3-5. FAMC tubes attached to the top of the tailboom structure for static testing.

One end of each F>MC tube is anchored to the base of the cantilever. To anchor the tubes firmly,
the threaded rod end fittings are placed through holes drilled into the cantilever wall/steel plate.
By tightening nuts on either side of the plate, the FAMC tube is secured. The other is attached to
aluminum L-brackets bolted to the tailboom 0.254 m from the base. The F°MC tubes are secured
to the vertical section of the L-brackets in the same fashion as with the cantilever base. For ease
of installation and observation, the F°MC tubes are offset 25.4 mm from the tailboom skin (a
production solution would likely be implemented inside of the tailboom). The distance between
the end fittings (the effective length of the F°MC tubes) is 0.102 m. Pressure can be applied to the
fluid via the pressure valve. Upstream of the pressure valve is a length of clear, rigid plastic
tubing through which a column of fluid can be observed. The test parameters are summarized in

Table 3-1. For this test, 91% isopropyl alcohol is used because it is a safe, readily available fluid

33
with lower surface tension than water, making it less prone to forming air bubbles. As discussed
in Section 3.3, air bubbles are highly undesirable in this application. A fiber winding angle of 20
degrees is chosen because, as discussed in Chapter 4, smaller fiber angles typically result in
higher pumping, and 20 degrees was the smallest angle achievable with the readily available fiber
meshes at the time. Supplied by McMaster-Carr, corrosion-resistant 25/32”” ID Super-Abrasion-

Resistant Expandable Sleeving was used for the fiber sleeving.

Table 3-1. Static Tailboom Test Stand Parameters.

Characteristic Imperial Metric
Fluid 91% Isopropyl Alcohol
F’MC tube
- length 3.98in 101 mm
- inner radius 0.156 in 3.97 mm
- fiber angle 20°

3.2.2 Actuation Test

The authority and pumping amplification mechanics of the F?MC tube are evaluated by
actuating the tailboom. Internally pressurizing the F"MC tubes causes the tailboom to bend. To
demonstrate this, the fluidic circuit is configured as shown in Figure 3-4. The tunable orifice in
the inertia track is closed, preventing fluid flow. The fluid in the bottom F*MC tubes is
pressurized using compressed air, while the fluid in the top half of the circuit is left open to the
atmosphere. As fluid pressure in the bottom tubes increases, the bottom F2MC tubes expand
radially and contract axially. The ends of the F°MC tubes are attached to the tailboom, so the
axial contraction exerts a moment on the tailboom, causing it to bend downward. This downward
deflection is measured using a laser vibrometer. A plot of tailboom vertical deflection vs. applied

fluid pressure is obtained to evaluate the actuation capability of the F°MC tubes.

34

3.2.3 Actuation Model

To predict actuation, the model developed in Chapter 2 is adapted for the static case. Figure 3-6

shows the cantilevered beam model with F°MC tubes attached to the top and bottom.

d(x) V%((X,t)

Figure 3-6. Schematic of the cantilevered beam model with F°MC tubes.

For the purely static case, Eq. (2.25) can be simplified significantly; all derivatives of {q} are
zero, and y and 6 may be neglected since those motions are zero in the absence of dynamic

forcing. Thus, the static response satisfies

[K1{q} = {F}, (3.1)
where
_ L dzlpj dzlpn
Kj —J;) EIW dx? dx, (32)

is the stiffness matrix of the tailboom structure, and
{F} = B,{(L)} + 2ny (F){d2121}, 3.3)
where L; is the tube length. Substituting Eq. (2.53) into Eq. (2.43) gives
Fo =i {d:3"{q} + c,p (3.4)

Substituting Eg. (3.4) into Eq. (3.3), we get

35
[KHa} = B A} — 2n, (e {d} {q} + cap){d21 21} (3.5)
Since the actuation test involves no external excitation, F,, = 0. Solving Eq. (3.5) for {q} yields:
{g} = —2nyc;[J1{d21921 3D, (3.6)
where
1 = 1K1 + 2mpcy (G} V] @)
Observing that w, = {1} {q}, we premultiply Eq. (3.6) by {1, }" to obtain

wy = —ancz{lpL}TU]{dzﬂ/)él}P- (3.8)
Eqg. (3.8) relates tailboom tip displacement to the fluid pressure inside the fluidic circuit and

depends on the geometric and material properties of the F°MC tubes and cantilever beam.

36

3.2.4 Experimental Actuation Results

Figure 3-7 shows the experimental results of tailboom tip displacement as a function of tube
pressure. The FAMC tubes have sufficient authority to cause the tailboom to deflect almost 1 mm
at 414 kPa. During depressurization, the tailboom displacement is larger than during
pressurization. This slight hysteresis may be due to friction in the tailboom structure, F°MC tube
attachment hardware, and between the stainless steel mesh and rubber bladder. The results agree
with the model predictions, proving its ability to predict actuation up to 414 kPa. Higher

pressures were not tested due to limitations in the available air pressure source.

O — Model Prediction
-0.01- L -
N - Pressurization

= 002" —+ De-pressurization -

S

‘—' -0.03F |

C

(D)

e -0.04 -

(D)

o

@© -0.05- y

o

(%

A -0.06 !

=2

— -0.07- -
-0.08 |- 7
-0.09° i : - f :

0 100 200 300 400 500

Fluid Pressure [kPa]

Figure 3-7. Theoretical and experimental tailboom tip deflections versus F°MC tube pressure.

37

3.2.4 Pumping Test

As the tailboom deflects, FZMC tubes on one side contract while the others extend,
resulting in fluid pumping between the top and bottom tubes. To quantify the fluid pumping
ability of the system, the tailboom is statically loaded near the tip and the fluid volume pumped

out of the tubes is measured.

Atmosphere

Fluid volume change $ -----

— Top F*MC tubes —
Bleed Valve
(open)

Inertia Track

Orifice (closed)

Figure 3-8. Schematic of the fluid pumping experiment fluidic circuit.

To enable this measurement, the fluidic circuit is configured as illustrated in Figure 3-8.
A short length of clear 1.59 mm diameter hard plastic tubing is connected to the bleed valve, so
the height of the fluid column fluid can be measured. The tunable orifice is closed and the bleed

valve is opened, allowing the top F’MC tubes to pump fluid into the atmosphere. Static loads are

38
applied to the tailboom, causing it to deflect downward. As in the actuation experiment, tailboom

displacement is measured with the laser vibrometer.

3.2.5 Pumping Model

The volume of fluid pumped by the tube can be found by integrating Eq. (2.44) with respect to
time:
V = —c3x: — cyp. (3.9
Setting p = 0 and substituting Eqg. (2.53), Eq. (3.9) becomes
V = —cs{d:}"{q}. (3.10)
Note that c3 is computed numerically for this study. Similarly, Eq. (3.5) becomes
[KHq} = B4} — 2ny, (i {d e} {aD{da1 934} (3.11)
Combining like terms and solving for {g},
{a} =B Uy} (3.12)
The tip displacement
wy, = {}{q} = WL UKL, (3.13)
Substituting Eq. (3.12) into Eq. (3.10) gives
V = —cs{d}" UI{L}F (3.14)
Finally, Egs. (3.13) and (3.14) are combined to obtain

RACALIIUAN
Wl Y

the static relationship between fluid pumping and tip displacement.

V= (3.15)

39

3.2.6 Experimental Pumping Results

Figure 3-9 compares the theoretically predicted and experimentally measured volume
versus displacement. The experimental results confirm the predicted linear relationship between
fluid volume change and tailboom tip displacement. During the loading portion of the
experiment, weights are added at the tip of the tailboom. The slope of the least squares fit of the
loading data is 10% lower than the theoretically predicted slope. Compliance in the L-bracket
attaching the FZMC tubes is one possible explanation: if the attachment is not perfectly rigid, then
the tubes will contract less, reducing fluid volume change. The weights are then removed to
produce the unloading curve. Again, there is hysteresis, so after fully unloading the tailboom tip

was 0.512 mm lower than where it originated.

0.1 L L : : : L L
0.09l-l — Model Prediction
—< Loading
~ % Unloading

I

\\
\
L]

0.08

I

0.07

0.06

I

0.05

I

I

0.04

0.03

I

0.02

I

Fluid Volume Change [mL]

I

0.01

- r r r r r r r
K

0 0.5 1 1.5 2 2.5 3 3.5 4-1
Downward Tailboom Tip Displacement [mm)]

Figure 3-9. Theoretical and experimental fluid volume change versus tailboom tip deflection.

40

3.3 Benchtop F’MC Tube Testing

The governing equations of the F"MC tube have four parameters: c;_,. ¢; and c, are
computed numerically by solving the nonlinear equations derived by Scarborough et al. [44]. The
solution process can be seen in the MATLAB code in Appendix B, under the
mcKibbenTubeConstants(P) subroutine. The MATLAB function fsolve.m is used for the
numerical solutions, the settings are specified in the variable “options,” and Scarborough’s initial
guesses are specified as the second argument of fsolve.m in Scarborough’s code. c3 and c, are
determined empirically. This section describes the work conducted to measure these two
parameters and better understand braid-sheathed F?MC tube behavior at the component level.

¢ describes the FPMC tube pumping ability, or the volume of fluid pumped per unit axial
tube displacement. Larger pumping coefficients are desirable since they result in more inertance
and therefore more weight-efficient absorbers. c, is the tube compliance. Braid-sheathed F"MC
tubes encounter three main sources of compliance. As illustrated in Figure 3-10, the first is air
bubbles in the fluid, which reduce the utilization of the working fluid. This is solved by
pressurizing the fluid such that the air bubbles collapse to a negligible volume. As shown in
Figure 3-11, the second is poor engagement between the bladder and fiber mesh, which results in
under-utilization of axial displacement. This is solved by pre-tensioning the F"MC tube, which
causes the fiber mesh tube to constrict and better engage with the inner bladder. The third source
of compliance is the internal bladder. Shan et al. showed that the inner liner, which has a bulk
modulus less than two orders of magnitude of that of the fluid, is a significant source of
compliance [48]. A thinner liner material produces a tube with a higher modulus ratio between
the open and closed-valve case, since a smaller volume of material is compressed. Thus, both the

bladder bulk modulus and thickness are important determinants of F"MC tube performance. The

41
work presented here not only characterizes F"MC tube pumping and compliance, but also seeks to
provide a solution to the bladder compliance issue.

In terms of bladder design, the parameters c3 and c, present a practical engineering
tradeoff. Lower compliance c, is desired and requires a stiff bladder material. However, stiffer
bladder materials tend to have worse pumping performance. In the most extreme case, a rigid
metal bladder would allow virtually no compliance but provide zero pumping benefit. To find a
suitable bladder material and thickness, a number of F2MC tubes were built using candidate
bladders, and their respective pumping (c3) and compliance (c,) values are measured. The
measured parameters are then inputted to the model to simulate the dynamic performance for

each type of F"MC tube.

Source 1: Air bubbles

fiber
reinforcement

fuid ﬁ

air bubble Solution:
Apply initial pressure

bladder air bubble
shrinks under pressure

Figure 3-10. lllustration of the effect of air bubbles in the fluid.

42

Source 2: Poor bladder/mesh contact

fiber
reinforcement

fuid q

Solution:
Tension the mesh
tightly over the bladder
& apply pressure

bladder

air gap

Figure 3-11. Illustration of the effect of poor engagement between the bladder and fiber mesh.

3.3.1 Benchtop Test Apparatus

F2MC tubes are constructed and secured to a table, as pictured in Figure 3-12. Each tube
is attached to steel L-brackets, and nuts are used to pre-tension the F2MC tube until the diameter
of the tube midpoint reaches a pre-determined nominal value of 9.86 mm (0.388 in). This pre-
tensioning is needed to ensure sufficient engagement between the internal bladder and the

reinforcing fibers.

Figure 3-12. Benchtop F?MC test stand.

43

The bladder materials tested are summarized in Table 3-2 and pictured in Figure 3-13. As
the suppliers (Qcare for the 1/32” Latex Rubber, McMaster Carr for all other tubing) do not
provide elastic modulus data for these materials, they are estimated using Shore Durometer
correlations. The F"MC tubes have an inner diameter of 9.53 mm (3/8 in) and a nominal effective
length of 152 mm (6 in). Bladder thicknesses of 3.18 mm (1/8 in) and 1.59 mm (1/16 in) are

tested for each material. 0.79 mm (1/32 in) thick latex rubber is also tested.

Table 3-2. List of bladder materials tested.

Bladder Material Estimated Elastic Modulus [MPa]
Latex Rubber 1
Santoprene 4
Masterkleer PVC 4.7
Crack-resistant polyethylene 45
Latex rubber (E=1 MPa) Masterkleer PVC (E=4.7 MPa)

Santoprene (E=4 MPa) Polyethylene (E=45 MPa)

Figure 3-13. Photograph of the different bladders tested.

44

3.3.2 Pumping Test

The fluidic circuit diagram for the pumping test is shown schematically in Figure 3-14.
The F°MC tube is connected to clear, rigid plastic tubing, through which a column of fluid (91%
isopropyl alcohol) can be observed. The clear tubing is made of 3.18 mm (1/8 in) inner diameter
hard propylene. The circuit is filled through the fill valve and all air bubbles are removed from
the fluid. After closing the fill valve, the nuts securing the end fittings to the L-brackets are turned
to adjust the length of the F2MC tube. This axial displacement causes a volume change inside the
F2MC tube, which is observed as a change in fluid column height. Volume pumped is plotted
against the axial displacement of the FZMC tube, and the slope of the resulting curve yields the

pumping coefficient c5.

Atmosphere

Fluid volume change i -----

FMC tube

—><}—
Fill Valve

Figure 3-14. Fluidic circuit diagram of the benchtop pumping test.

45

250 : : . :
O 1/32" Latex Rubber
200 - 1/16" Masterkleer PVC o |
+ 1/16" Santoprene
—_ % 1/16" Polyethylene H
E 1/16" Latex Rubber -
—= 150~ ¥
fn u] L
2 9
L. [m| i
E 100 +
v o *
50/- o ¢ 1
¢ ® t 3 ®
¥ x x *
O x r r r r
0 0.2 0.4 0.6 0.8 1

Axial displacement [mm]

Figure 3-15. Experimental measurements of fluid column height vs. axial displacement for
different bladders.

Figure 3-15 shows the experimental pumping results obtained for 1.59 mm (1/16 in) thick
bladders for all materials, as well as for 0.79 mm (1/32 in) thick latex rubber. Bladders with better
pumping ability exhibit steeper slopes. 1.59 mm (1/16 in) polyethylene, the stiffest of the tested
bladders, pumps the least fluid, whereas the latex rubber bladders pump the most. The results
summarized in Figure 3-16 show clearly that stiffer materials perform worse on the pumping test
than those with lower moduli. A four-fold increase in elastic modulus between Latex Rubber and
Santoprene resulted in an approximately 21% decrease in pumping performance. A 45-fold

increase in modulus between Latex Rubber and Polyethylene resulted in over 86% reduction in

pumping.

46

Increasing stiffness
1.80E-03 é
1.60E-03
AV = —c3Ax

1.40E-03

1.20E-03
‘E 1.00E-03
P
E
7 8.00E-04

6.00E-04

4,00E-04

2.00E-04

0.00E+00

1/16 in Latex 1/16in 1/16in 1/16in 1/32 in Latex
Rubber Santoprene Masterkleer PVC Polyethylene Rubber

Figure 3-16. Comparison of pumping coefficient for different bladders.

3.3.3 Compliance Test

The fluidic circuit diagram for the compliance test is shown schematically in Figure 3-17.
A F*MC tube is mounted to the table in the same fashion as in the pumping test. The tube is pre-
tensioned to the nominal setting used in the pumping test and its ends are fixed such that the tube
does not extend or contract. Upon filling the system and removing air bubbles, air in a clear
plastic column is pressurized. As the system is pressurized, the F"MC tube expands, causing a
drop in the fluid column level. Fluid volume measurements are taken at increments of 5 psi of

pressure.

Pressurized Air

Fluid volume change

FMC tube

—>G—

Closed Valve

Figure 3-17. Fluidic circuit diagram for the benchtop compliance test.

20 : : : 0 :
0
@+ 4
£ -20- ° + o,]
% % (-] + .
S -40- ® . + L. -
2 x 8 .
c -60 ® o = . A
g “ °
S o * 1/8" Latex Rubber " o -
) ® 1/16" Latex Rubber
2 100/ | © 1/8"Santoprene * |
+ 1/16" Santoprene *
120 | — Zero Compliance ®
'140 L r L r r
0 10 20 30 40 50 60

Pressure [psi]

Figure 3-18. Fluid column height vs. pressure for various bladders.

47

48

Figure 3-18 shows a plot of fluid column height versus fluid pressure. A steeper slope
indicates higher compliance. For both the Latex Rubber and Santoprene, the thinner bladder
exhibits less compliance than the thicker versions. Furthermore, the stiffer material (Santoprene)
shows lower compliance than the softer material.

Figure 3-19 shows a compliance comparison between bladders of the same thickness but
different materials, as well as for the 0.79 mm (1/32 in) thick Latex Rubber bladder. The plot
shows the same trend as in Figure 3-18: stiffer materials produce less compliant FAMC tubes. This

trend is summarized in Figure 3-20 and in Table 3-3.

10 L U U L T
0 g .
— -] E %
£ X x
E -101 =t 4+ 8 o X ox .
= u + -] ®
=) n o
© -20- * °]
g u + o
c . + o
g -30r- + i
S ® 1/16" Latex Rubber = +
= + 1/16" Santoprene = +
= 401~ | o 1/16" Masterkleer PVC u i
% 1/16" Polyethylene =
-50- | B 1/32" Latex Rubber "
— Zero Compliance
-60 : : r : :
0 10 20 30 40 50 60

Pressure [psig]

Figure 3-19. Experimental measurements of fluid column height vs. pressure for different bladder
materials.

3.00E-12

Increasing stiffness

2.50E-12

2.00E-12

1.50E-12

c, [m*/Pa]

1.00E-12

5.00E-13

0.00E+00

Figure 3-20. Comparison of compliance for different bladders.

Table 3-3. Summary of benchtop pumping and compliance test results.

Bladder Pumping [m3/m] Compliance [m3/Pal
1.59 mm (1/16 in) Latex Rubber 1.62 x 1073 10.55 x 10713
1.59 mm (1/16 in) Santoprene 1.28 x 1073 7.89 x 10713
1.59 mm (1/16 in) Masterkleer PVC 1.22x 1073 5.31x 10713
1.59 mm (1/16 in) Polyethylene 0.23x 1073 2.81x 10713
0.79 mm (1/32 in) Latex Rubber 1.68 X 1073 475 x 10713

Figure 3-18 shows that thinner bladders cause less tube compliance than do thicker
bladders. The results from Figure 3-16 show that bladders with lower elastic modulus have a
more favorable pumping coefficient, while Table 3-3 shows that lower modulus also causes

higher compliance.

50

3.3.4 Simulations Using Benchtop Test Results

To investigate the tradeoff between pumping and compliance discussed in Section 3.3.3,
c3 and ¢, measurements for each F"MC tube are inputted to the model and the simulation results
are compared. All frequency-domain simulations presented in this dissertation are performed
using the MATLAB command bode.m. An inertia track inner diameter of 3.86 mm (0.152 in) is
used in all simulations, but the inertia track length is adjusted for each material to ensure that the
absorber is properly tuned. Frequency response plots for 1.59 mm (1/16 in) Polyethylene, 1/16 in
Masterkleer PVC, 1/16 in Santoprene, 1.59 mm (1/16 in) Latex Rubber, and 0.79 mm (1/32 in)

Latex Rubber are shown in Figures 3-21, 3-22, 3-23, 3-24, and 3-25, respectively.

-80 . . . : :

-85

-935
-100

N
=)
o

-110

—— Tailboom
.......... FEMC-TE“bGGm

L A

%] —

=3
T

Tip Displacement per Unit Tip Force [dB]

125 10 11 12 13 14

Frequency [Hz]

Figure 3-21. Simulated frequency response of a tailboom with FMC tubes with 1.59 mm (1/16
in) Polyethylene bladder.

51

-80 . . . X: 12.38

Y -63.59

—— Tailboom
.......... FEMC-TE“hGGm

o
o
T

............
.........

.....
.....
.....

-105¢1

N

— —

on o
T T

Displacement per Unit Tip Force [dB]
o
o

Ip
N
N
o

T

T

1255 10 11 12 13 14

Frequency [HZ]

Figure 3-22. Simulated frequency response of a tailboom with F°MC tubes with 1.59 mm (1/16
in) Masterkleer PVVC bladder.

-80

Tip Displacement per Unit Tip Force [dB]

-125

-85+

—— Tailboom
F2MC-Tailboom

90}
95}
-100+
-105¢
-110¢

-

—

on
T

-120¢

10

11 12 13 14
Frequency [HZ]

52

Figure 3-23. Simulated frequency response of a tailboom with F’MC tubes with 1.59 mm (1/16
in) Santoprene bladder.

53

-85} | — Tailboom
F2MC-Tailboom

Tip Displacement per Unit Tip Force [dB]

125 10 11 12 13 14

Frequency [HZ]

Figure 3-24. Simulated frequency response of a tailboom with F’MC tubes with 1.59 mm (1/16
in) Latex Rubber bladder.

54

-80 . . . X: 12.38 .

Y -83.59

—— Tailboom
.......... FQMC-TaiIhOOm

oo
n
T

00F
-105
-110

N
—
on

-120

Tip Displacement per Unit Tip Force [dB]

9 10 1 12 13 14
Frequency [HZz]

-125 :

Figure 3-25. Simulated frequency response of a tailboom with F’MC tubes with 0.79 mm (1/32
in) Latex Rubber bladder.

Based on Figures 3-21 through 3-25, the 0.79 mm (1/32 in) Latex Rubber bladder is
clearly superior to the other bladders tested. The absorber using the 0.79 mm (1/32 in) Latex
Rubber can produce a visible anti-resonance in the frequency response, whereas the 1.59 mm
(1/16 in) Latex Rubber, Santoprene, and Polyethylene bladders fail to do so. Of the bladders
tested, the 0.79 mm (1/32 in) Latex Rubber ranks second in compliance and first in pumping
coefficient. Polyethylene, which ranked first in compliance but last in pumping, shows the worst
overall performance. The Masterkleer bladder, which ranked third in both categories, showed the
second best overall performance. Thus, pumping coefficient and compliance are both important

determinants of the FAMC tube’s performance.

55

3.4 Dynamic Model Validation of the Lab-Scale Tailboom Structure

With the knowledge gained from the experiments described in the previous sections, a
high-performance absorber is designed for and tested on the lab-scale tailboom structure.
Additional validation experiments are conducted to study the effect of pre-pressurization on

performance and to test the linearity of the system.

3.4.1 Experimental Demonstration of Absorption and Damping

The vibration absorber uses the parameters listed in Table 3-4, targeting the first vertical
tailboom bending mode. New FMC tubes are fabricated, pre-pressurized, and pre-tensioned to a
nominal center diameter of 11 mm (0.435 in). The coefficients c; and c, are measured using the
same procedure outlined in Section 3.3. Orifice resistance R, is tuned using the experimental
frequency response plot, to approximately match the damping ratios of the absorber peaks,

calculated using the half-power method.

Table 3-4. Absorber parameters used for the dynamic tests.

56

Characteristic Imperial Metric
Fluid
pr 112 lb/ft3 1800 kg/m3
U 1.3x 107 7psi-s 9% 10™*Pa-s
- pre-pressure 100 psi 690 kPa
F*MC tube
- length 15in 0.38m
- diameter 0.375in 9.5 mm
- weight 0.17 lb 7589
a 18 deg
o} 2591b/in 45.35 kN /m
cy 3.41 in? 0.0022 m?
c3 —2.54 in? —16.4 cm?
Cs 4.6 X 10~*in®/1b 1090 mm5/N
Inertia track
L, 110.2 in 2.88m
21, 0.277 in 7 mm
Rory 2930 _li 3.19 X 109k—f
in*s mts
Total weight 61lb 2.7kg

A high-density, low-viscosity fluid provided by LORD Corporation is used in this

experiment. A dense fluid with minimal viscosity is desirable because denser fluids provide

higher fluid inertance, and lower viscosity results in more efficient fluid pumping and therefore a

deeper anti-resonance.

57

% -80 L L L L L L

S

s -90

LL

2

= -100

c

D

o -110

o

5 =—Th ical l /

GE) -120/- Theoretical Baseline \‘ 5]
o =-==Theoretical Treated 1 ,'

S 430 === Experimental Baseline " 1
.‘é’ -====* Experimental Treated v

Q.

| _140 r r r r r r

= 5 7 9 11 13 15 20 25

Frequency [Hz]

Figure 3-26. Theoretical and experimental frequency response of the baseline and absorber-
treated tailboom.

Figure 3-26 shows the theoretical and experimental frequency responses from tip force to
tip displacement of the untreated baseline tailboom and of the tailboom with F"MC tubes. The
theoretical and experimental frequency responses of the baseline structure show good correlation;
the correct static behavior is predicted, and the first two natural frequencies match. The Open
Valve curves represent the tailboom response with the absorber orifice completely open (i.e.

Rors = 0). Based on pre-test predictions, the inertia track is tuned such that the absorption
frequency matches the tailboom’s first natural frequency. The absorber reduces vibration
amplitude at the first mode by 10.6 dB (70.5%). The model predicts a reduction of 13.1 dB

(77.8%).

58

-— Theoretical Baseline

110~ | —==Experimental Baseline
====* Experimental Partially Closed Valve
=== Theoretical Partially Closed Valve

-115-

Tip Displacement per Unit Tip Force [dB]

r r r r

7 9 11 13
Frequency [Hz]

Figure 3-27. Experimental frequency response of the baseline and damped absorber-treated
tailboom.

As shown in Figure 3-27, partially closing the orifice eliminates the two flanking
resonant peaks of the absorber, producing a damped absorber. The experimental and theoretical
damped absorbers provide a damping ratio of 10.8%, a 7.8% improvement over that of the
baseline structure. Model predictions indicate that an optimally tuned orifice with R,,.; = 3.05 X

107kg
ms

can add up to 11% damping to the first mode. This configuration can be useful against

impulsive, broadband, or time-varying harmonic inputs that may be amplified by the flanking
resonant peaks of an absorber.
Finite element analysis of the lab-scale tailboom structure indicates the presence of a

torsional mode around 11.7 Hz. The shaker may not be aligned perfectly, thereby exciting the

59
torsional and lateral bending modes. Furthermore, due to spatial constraints the laser vibrometer
is not pointed along the centerline of the tailboom. Thus, unmodeled tailboom dynamics,
particularly from the resonance observed at 10.5 Hz, may explain the discrepancy in vibration
amplitude between the experimental and theoretical absorber frequency responses.

The total added weight due to the absorber and fluid is 2.7 kg (7 1b), which is below the
initial 4.55 kg (10 Ib) weight target for 2% damping added set by the sponsor. The F"MC-
absorber adds 7.8% damping at the first mode, or 2.9% per kg, over 6.5 times the sponsor goal.
The experimentally measured absorber and damped absorber performances are summarized along
with model predictions in Table 3-5. The results shown indicate that F°MC-based absorbers can

significantly reduce vibration in realistic aerospace structures for a low weight penalty.

Table 3-5. Summary of absorber and damped absorber performance.

Characteristic Value
Amplitude Reduction
- Theory 77.8%
- Experiment 70.5%
Damping Added
- Theory 7.8%
- Experiment 7.8%
Theoretical Max Damping Added 11%

3.4.2 Pre-Pressurization and Linearity Study

To study the effect of pre-pressurization on absorber performance, experiments are run
for various nominal fluid pressures. The influence of fluid pre-pressure on F"MC tube
performance is shown in Figure 3-28. Increasing the pre-pressure applied to the fluid results in a

deeper absorber valley and lower resonance peak. Applying pre-pressure to the fluid helps

60
collapse air bubbles that increase fluid compliance and reduce performance. Furthermore, pre-
pressurization improves the mechanical engagement between the F2MC fibers and bladder. This
coupling is needed to ensure that axial displacement in the F*MC tubes is converted into fluid

pumping. The marginal benefit of further pressurization decreases with increasing pressure.

)

S,

o -90 |
o

o

LL

a 9 1
|_

5 -100 :
)

o

% -105 -
% Pre-pressure: 25 psi

&g -11:0- e Pre-pressure: 50 psi -
I —rmes Pre-pressure: 75 psi

g_ -115- | T===== Pre-pressure: 100 psi -

4 6 8 10 12 14 16
Frequency [Hz]

Figure 3-28. Experimental frequency response various fluid pre-pressures.

The effect of tailboom forcing amplitude is illustrated in Figures 3-29 and 3-30. In a
perfectly linear system, the frequency response from tip force to tip displacement should be
independent of forcing amplitude. However, increasing shaker forcing amplitude causes a

decrease in the resonance frequencies of the structure. Consequently, at higher forcing amplitudes

61
the absorber is not tuned to the correct resonance frequency, and performance declines. Thus, the

effect of forcing amplitude must be considered when designing an absorber.

L L L L

-100

-105

-110

-115

— Forcing Amplitude: F

Tip Displacement per Unit Tip Force [dB]

-120) eeeeeeee Forcing Amplitude: 2F |
""" Forcing Amplitude: 4F

-125 =— ‘ g
5 10 15 20

Frequency [Hz]

Figure 3-29. Experimental frequency response of the baseline tailboom for various forcing
amplitudes.

62

)

2 90

)

-

S 95

k=

— -100

£

= .105

)

o

e -110

=

g -115

3 — Forcing Amplitude: F

A 120 [ererenes Forcing Amplitude: 2F y

.IC:l 125+ 77 Forcing Amplitude: 4F |
S 10 15 20

Frequency [Hz]

Figure 3-30. Experimental frequency response of the treated tailboom for various forcing
amplitudes.

63

Chapter 4

F’MC-Absorber Design Process

A general design process for F"MC-based vibration treatments is developed and tested. A
fluidic circuit with two parallel inertia tracks is proposed and analyzed to enable an absorber to be
tuned to multiple frequencies. Finally, the performance per added weight of the F"MC-based

absorber is compared against an equivalent piston-based pumper and an active control scheme.

4.1 F’MC-Absorber Design Process

To build an effective absorber, appropriate F"MC tube parameters must be selected.
These include the length and attachment location of the tubes, the tube diameter, fiber winding
angle, inertia track dimensions, working fluid, and bladder material and thickness. Various design

considerations are discussed and then summarized in a design process.

4.1.1 F°MC Tube Placement

The optimal attachment location of the F*MC tubes depends on the vibration frequency
targeted and the response shape of the underlying structure at the target frequency. Integrating Eq.
(2.5.3) reveals that F"MC tube axial displacement, and therefore fluid pumping, is maximized
when the slope difference between the attachment points is maximized. Through a parametric
study for a simple cantilever beam with F"MC tubes, Zhu et al. confirm that designs with F°MC
tubes attached in high-slope-difference and thus high-strain regions of the beam outperform
others [42]. As shown in Figure 4-1, the theoretical first full-scale tailboom mode shape slope

monotonically increases from the root to the tip. From this plot, it is clear that maximum strain is

64
achieved by attaching F*MC tubes at the tailooom root and tip. A weight-efficient solution may

be obtained by attaching F2MC tubes at the root and at approximately 30% station.

Normalized Slope
o S o o
(@)] ~ (0] Vo)

o
U

r r

0 0.2 0.4 0.6 0.8 1

0.4° -

Non-dimensionalized Axial Position

Figure 4-1. Slope of first vertical bending mode shape of the full-scale tailboom.

4.1.2 F’MC Tube Sizing and Number

As discussed in the previous section, FAMC tube length is determined largely by the
response shape of the structure at the target frequency. The tube diameter governs the control
authority of the vibration control treatment. Larger diameter tubes pump more fluid and produce

more force for a given pressure, magnifying the vibration damping effect.

65
Using multiple F°MC tubes has a similar effect to increasing the tube cross-sectional
area. More or higher diameter tubes reduce the required inertance. A simplified F2MC tube

pumping model is shown in Figure 4-2.

ot)

7

I

7

k/2 /)

I

m L

Figure 4-2. Simplified F"MC tube pumping model.

The cantilevered tailboom is simulated as two parallel springs anchored to the wall and
attached to a rigid rod that rotates with angle 8 about its center at a fixed hinge. An external
torque T is applied to the rod. The n,, pairs of F2MC tubes on the top and bottom are
interconnected via an inertia track that allows volumetric flow rate Q. number of FAMC tube pairs
affects the tuning of the inertia track. The equation of motion for the system in Figure 4-2 is

obtained via the moment balance

k
0 = —2n,dF, — 2d (Ed sin 9), (4.1)

66
where d is the distance between the hinge and the FAMC tube axis, k is the spring constant, and
F, is the F°MC tube axial force given by Eq. (2.43). Substituting Eq. (2.43) into Eq. (4.1), solving

for pressure p, and using the small-angle approximation gives

1 d k
p = T—— (cl + —) 0. (4.2)

Substitute Eq. (4.2) into Eq. (2.44) and differentiate with respect to time to obtain

o LY dlo - 27 43
0= cy @ 2n, ¢ 2dc, (4:3)

For simplicity, ignore the effects of fluid resistance and substitute Eq. (4.3) into Eq. (2.40):

Lo, | () + = O PRI PR (1T+2T) (4.4)
s cy “ 2n, Cs cy @ 2n,) 2n,d3c, AP '

Eq. (4.4) can be transformed into the Laplace domain to derive the transfer function

2
2
0(s) ¢4 Iys +c4np

- 2

where 6(s) = L[6(t)] and T(s) = L[T(t)]. To calculate the vibration response at the tailoboom

: (4.5)

natural frequency, solve Eq. (4.5) for s = j/k/M:

0. k)| _ Colpkn, — 2M (4.6)
T\/ym ||~ d?[cylpk?ny, — 4c;Mny, — 2k(M + (c2¢3 = cic)ln)|’ |

where M is the mass of the tailboom and \/k /M is the natural frequency. Setting the numerator of
Eq. (4.6) to zero gives the approximate inertance required to minimize vibration in the structure at

resonance:

= (4.7

CaMy WA CyMy,’

M 2 1 2
If—?

67
where w,, is the natural frequency of the tailboom. The inertance requirement of a tuned absorber
is inversely proportional to n,,. For instance, doubling the number of F2MC tubes has the same
effect as doubling the absorber inertia. Thus, using Eq. (4.7) one can evaluate the tradeoff
between the number of F?MC tubes and the inertia track size. A method for quantitatively sizing
F?MC tubes is discussed in Section 4.1.5.

Al else being equal, a configuration using multiple F"MC tubes is heavier compared to
one using a single large tube since the total surface area of the F°MC tubes is greater.
Furthermore, the additional FAMC tube end fittings and plumbing adds parasitic weight.

However, if mounted inside the structure, the smaller-diameter tubes have a longer moment arm

d compared to a single tube.

4.1.4 F?MC Tube Bladder Design and Fiber Winding Angle

As discussed in Section 3.3, the properties of the bladder inside the F"MC tube is a major
determinant of F°MC tube performance. Constants c; and c, from Eq. (2.44) are of particular
interest when selecting a bladder. Figures 3-21 through 3-25 suggest that performance is
maximized when pumping coefficient c5 is maximized. Simultaneously, compliance c, must be
minimized [54]. Both of these parameters are determined partially by the bladder material and
thickness used in the F"MC tube.

As summarized in Table 3-3, stiffer bladders offer lower compliance at the expense of
reduced pumping. The lower-compliance benefit of thinner bladders can be seen in Figure 3-18;
this reduced compliance is due to the smaller volume of bladder material compression [48].
Thicker bladders have the added disadvantage of reducing the volume of fluid inside of the F"MC
tube [58]. On the other hand, softer bladders expand and contract readily with the fiber

reinforcement, enabling better pumping. Thin-walled bladders offer lower compliance without

68
sacrificing pumping, but may be less resistant to wear and leaking. Thus, the pumping and
compliance coefficients of numerous candidate bladder materials should be measured. If a model
of the system of interest is available, then the best-performing bladder can be determined through
simulation. The results of Section 3.3.3 indicate that a thin and flexible bladder like the 0.79 mm
(1/32 in) latex rubber provides the best results of the bladders tested.

Although tube compliance generally reduces absorber performance, in some cases added
compliance may be desirable. As can be seen in Eq. (4.7), the inertance required to tune an
absorber to a given frequency w,, is inversely proportional to compliance c,. A low-compliance
system, while resulting in high performance, requires a large matching inertia, which requires a
large, heavy inertia track. If a higher-compliance system is deemed to provide acceptable
performance, then it may be preferable to a heavier system that provides more vibration reduction
than is needed. Thus, in practice a tradeoff must be made between compliance-related
performance and inertia track weight.

While having a flexible bladder that conforms to the F°MC fiber mesh is important, it is
equally important that the fibers are wound at a low angle. Zhu et al. compute the pumping factor
of the F?MC tube as a function of fiber winding angle [46]. Pumping factor is the ratio of the
volume change of a F"MC tube to that of a piston-cylinder of the same diameter. For filament-
wound tubes, pumping factor is maximized at small fiber winding angles, between approximately
5° and 20° depending on the thickness and material properties of the tube. The computation of c;
for braid-sheathed tubes is based purely on the geometry of the fibers. According to this model,
pumping —c5 is maximized as the winding angle approaches zero (Figure 4-3). In this research,
tubes with winding angles around 20 degrees are used because braided sleeves with that winding

angle are readily available commercially.

69

0.45

0.4

0.35

0.3

-C, [m2]

0.25

0.2

0.15

0.1

0.05

5 10 15 20 25
a [deq]

Figure 4-3. Pumping coefficient c3 as a function of fiber winding angle «a.

4.1.5 Inertia Track Dimensions, Orifice, and Fluid

The inertia track of the damped absorber must be tuned to a specific frequency. The
simple approximation in Eq. (4.7) provides some insight into the relationship between tuning
frequency, compliance, and inertance. The inertance tuning equation for any frequency in general
is obtained by evaluating Eq. (4.5) for s = jw:

2
IF = . .
f wzc4np (4.8)

70
The required inertance is inversely proportional to c,. That is, stiffer systems (smaller values of
c4) require a larger fluid inertia. Due to the w? term in the denominator, tuning to a lower
frequency requires significantly more inertia.

Since Eq. (4.8) neglects losses in the fluid, it should be used only if the objective is to
minimize the open-valve response amplitude at a specific frequency. If an orifice is used to
moderate the absorber resonance and anti-resonances, then tuning rules accounting for fluid
resistance must be used. To derive such tuning laws, the governing equations in Egs. (2.34) and
(2.45) are simplified. Recall that the tailboom differential equation Eq. (2.5) is discretized using
the Rayleigh-Ritz method. Taking N = 1 in the Ritz series in Eq. (2.1), as well as substituting in
the forcing term Eq. (2.57), the following scalar tailboom equation is obtained:

Mg+ Cq + Kq = Y, F, — 2n,Fydyyihhs. (4.9)
To combine Eg. (4.9) with the fluidic system, the numerator and denominator of the transfer
function in Eq. (2.45) are separated and transformed into the time domain such that
F, = NyZ, + Ny Z, + Nyz, (4.10)
and
It + RZ, + Doz, — d;q = 0. (4.11)
Egs. (4.10) and (4.11) can be combined to eliminate Z from Eq. (4.10). This is necessary to make

the mass, stiffness, and damping matrices symmetric:

N, D, N,R\ N, N, D, N,
Ft = NO - i Zt + N1 - I_ Zt + I_dtq = NO - i Zt + I_dtq (412)
f f f f f

Substitute Eq. (4.12) into Eq. (4.9) to obtain

N2Dq

ZnPNz , ,
I dy1¥21d: | q + 2nydy 5, | No — I zy =Y. F,. (4.13)

Mq+cq+<1<+

71
Substituting Egs. (2.46), (2.48), and (2.49) into Eqg. (4.13), and combining the result with Eq.

(4.11) in matrix form, gives

CaC3 4cyc3
0114) K +2n,(c; — dyzdy —5—dyPp
][Q]+[C 0”q]+ Cq ci q
Ief1Z:] “ 1o RIlZ l 4 2 JZt
t s (4.14)
_[¥
N [oL] By
Define a new state variable z based on the following transformation:
q 1 0 q
[zt] = [0 npc4dt] [Z] (4.15)
2
Substitute Eq. (4.15) into Eq. (4.14) to obtain
M] Cc 0 .
[npc41f][q_ vlo mearad] 1
(4.16)
-K+2np< —Z—C?))dzﬂl’ndt an%dtdzﬂl}él ql _ Y. P
: d e, Wl [1]]
Ut

1 0
Finally, premultiply Eq. (4.16) by [0 ~2n, C2C3 d Wby to ensure that the stiffness matrix is

symmetric:

F——— 2 resendsuponds |]
0 _anfC263d21w21dt Z 0 —npRC2C3d21¢21dt Z

- CC3 , C2C3 /

K +2n, <C1 - c_) did 121 2my, C_dtd211/)21
+ 4 4 [‘1] (4.17)

C2C3 , 203 , Lz
an—dtdzllpzl _znp dtd21l/)21
C4 C4—

_ ¥
=%]Fy

72

Tailboom Fluidic System

=
N
[RY

..

Figure 4-4. Simplified mechanical analogy of a tailboom with F2MC tubes.

Equation (4.17) is significant because it takes the same form as the equations of motion

for the simplified mechanical analogy shown in Figure 4-4:

e | s Al | P B Y

where F = F, sin wt. By matching the mass, damping, and stiffness matrices of Eq. (4.17) to

those of Eqg. (4.18), the following equivalence relations can be made:

my =M, (4.19)
mp = —nzZJIfC2C3d21¢é1dt: (4.20)
by =C, (4.21)
b, = —nIZ,Rczc3d211/)§1dt, (4.22)

kl =K + chnpdtdzﬂl)él, (423)

73

and
CaC3 ,
ko = _anc_dtd21l/)21. (4.24’)
4

Note that, since ¢; , 4 = 0 and c3 < 0, Egs. (4.19) through (4.24) are all non-negative.

The tailboom structure is cleanly represented by the oscillator on the left hand side, and
the fluid by the oscillator on the right. Spring k, couples the fluid to the structure, and is
inversely proportional to compliance c,. The smaller the compliance coefficient, the stiffer kj is.
It follows that lower-compliance systems better transmit the tailboom motion z; into the fluid,
which can absorb the energy through motion z, of the fluid and dissipate it in dashpot b,. The
analogy in Figure 4-4 also helps to highlight the importance of properly tuning the absorber; to
maximize fluid motion z, (and therefore energy absorption in m, and dissipation in b,), the fluid
inertia m, and compliance c, must be tuned to the desired forcing frequency.

Researchers have previously analyzed the system in Figure 4-4 with b; = 0 [58, 59]. For
this analysis, C = b; = 0 is a reasonable assumption since helicopter tailbooms are very lightly

damped, with damping ratios typically less than 2%. The following non-dimensional parameters

are defined:
Fy
Zg = Z (4.25)
ﬂ, _ w
[k (4.26)
my
ko
y =2 (4.27)

Eliy

74

H= (4.28)
and
b,
(=—F—— (4.29)

2/makq
where w is the forcing frequency and z, is the static displacement of m, under a static load of
magnitude F;.
Liu and Liu observe that the frequency response plots for the skyhook absorber
configuration illustrated in Figure 4-4 intersect at two stationary points, P and Q, regardless of

damping ratio ¢ [60], as illustrated in Figure 4-5.

100
1
80 I .
o
o
60+ : : ---C_‘:O
[]
l : —421
B 40_ I : EEEEN CJ_>GO
N -
Ny A !
o 20r i L}
g ¢
o
(o]

o

-40

_60 | | [| | |
0 0.1 0.2 0.3 0.4 0.5 0.6

Figure 4-5. Sample frequency response of the system in Figure 4-4.

75
Very good approximations of the optimal tuning and damping ratios can be determined using
fixed-point theory for traditional, non-skyhook absorbers [61]. Ren uses fixed-point theory to
derive tuning laws for the skyhook absorber shown in Figure 4-4. In fixed-point theory, an
absorber is deemed to be optimally tuned if fixed points P and Q have the same magnitude and
zero slope [19]. By applying these conditions to the fixed points of the skyhook absorber, Ren

concludes that the optimal non-dimensional tuning parameters are

Yep = 17—, (4.30)

and

Sh_ (4.31)

Crp = 8
The higher the mass ratio, the higher the optimal tuning frequency and damping ratio.
Substituting Egs. (4.19) through (4.24) and Eqgs. (4.27) through (4.29) into Egs. (4.30) and (4.31),

the optimal fluid inertance can be computed:

frp = c,C ,
Fp C4np K + an (Cl - i43) dtd21¢21

(4.32)

Through a similar process, the optimal fluid resistance is found:

C5C3 dida P4
R =] (—6n) _ 433
FP fFP\/ P,) 2M +nf,lfFP6263dtd21¢él ()

The laws in Egs. (4.32) and (4.33) are tested in the OH-58C model with N = 1 and N = 5 in the

Rayleigh-Ritz approximation; the result is plotted in Figure 4-6 and summarized in Table 4-1.

76

——Tailboom N=1 ,
60 | Absorber N=1 n f
===Tailboom N=5

1

""" Absorber N=5

Tip Displacement per Unit Tip Force [dB]

'1102 5 8

Frequency [Hz]

Figure 4-6. Tuned OH-58C absorber for Rayleigh-Ritz series N = 1 and N = 5 using Eqgs. (4.32)
and (4.33).

Table 4-1. Inertance tuning estimates.

Method Base Inertance Required [kg/m4]
N=1 N=5
Eq. 4.8 (Simple tuning rule) 1.8168x10° 2.1984x10°
Eq. 4.32 (Fixed points theory) 1.67711x10° N/A
Parameter search 1.68x10° 2.02x10°

77
For N = 1, the tuned absorber is essentially optimal according to the fixed-points criteria. The
base inertance (inertance prior to oscillation frequency corrections) using the simple tuning rule
of Eq. (4.8) is 8.3% higher than the optimal solution. For any structure that can reasonably be
captured as a SDOF oscillator, Egs. (4.32) and (4.33) are sufficient. As can be seeninthe N =5
case, the tuning is not perfectly optimal when the baseline structure has multiple degrees of
freedom. The natural frequency of the system is 10% lower than in the N = 1 case. As can be
seen from Table 4-1, for the N = 5 case the simple tuning rule overestimates required inertance
by nearly 9%. However, there is a 20% discrepancy between the fixed-point theory prediction and
the optimum determined via a parameter search. Thus, the fixed-point theory may not provide the
best inertance tuning estimate for more complicated structures. Given that the system eigenvalues
converge from above as more terms are used in the Rayleigh-Ritz series, the fixed-point estimate
may at least provide a lower bound for the inertance requirement. Thus, an initial parameter
search may reasonably span Irixeq point < I < Isimpie tuning-

The base resistance (resistance value without frequency correction) estimate provided by

the fixed-point method, Ry-; = 2.08 x 108 %’ essentially matches the parameter search result

kg
sm?*’

for N = 1. The parameter search result for N = 5, Ry_s = 1.83 x 108 is approximately

12% lower than the fixed-point estimate. In this example, the optimal resistance value is less
sensitive to N than is inertance.

Additionally, Ren approximates the maximum response amplitude as

- F (4.34)
U

Knowing that larger diameter tubes or more tubes effectively provides a higher mass ratio u, Eq.

Z1

st

(4.34) can be used to size the F°MC tubes based on a response amplitude requirement.

78

Eqgs. (4.8/4.32) and (4.33) are practical and useful tuning laws for the absorber inertia
track and orifice, respectively. Such a set of tuning rules not only expedites the absorber design
process, but enables deeper study of various F2MC parameters. Previous studies of FAMC-based
absorbers and dampers have relied on Monte Carlo methods to test various fluidic circuit
parameters and find high-performing designs [41, 42]. With tuning laws, more computational
resources can be dedicated to studying other parameters instead of tuning the absorber.

Low baseline resistance and high inertance are desirable qualities in an absorber fluidic
circuit. Fluid resistance can always be added to a circuit by restricting an orifice, but resistance
cannot be removed from an inertia track. In practice, designing an inertia track of reasonable size
and weight, with sufficient inertance and the optimal amount of resistance or less, can be difficult.
As shown in Egs. (2.41) and (2.42), inertance is inversely proportional to track radius 7, squared,
whereas resistance is proportional to r;. High inertia can be achieved by using a small-diameter
inertia track, but the small diameter results in high flow resistance, which reduces absorber
performance. One design strategy to avoid this issue is to use a long inertia track with an
acceptably large diameter. However, since inertance is merely proportional to inertia track length,
this approach results in a large inertia track. Another potential solution is to introduce compliance
into the fluidic circuit, either by using a softer bladder material or by adding a fluid accumulator.
This reduces the inertance requirement, though at the expense of absorber performance. Finally, a
high-density fluid with low viscosity should be used to maximize inertance and minimize flow

resistance.

79

4.1.6 Inertia Track Configuration

The inertia track analyzed in Chapter 2 can only be tuned to a single frequency. The
ability to tune various system parameters like inertance would be useful not only for model
validation studies, but also for potential future development of semi-active vibration controllers
that adapt to varying flight conditions. For instance, a helicopter with variable rotor speed may
require an absorber that can be tuned to two different frequencies. In this section, a fluidic circuit
comprising two inertia tracks in parallel, each with a tunable orifice as illustrated in Figure 4-7, is

proposed.

— Top F°MC tubes

— 7
Q;

B
Orifice 1

Q;

B
Orifice 2

Bottom FMC tubes —

Figure 4-7. Diagram of proposed tunable inertia track.

80
The two tracks in Figure 4-7 are designed to have different inertances, I; and I,. With
Orifice 1 open and Orifice 2 closed, the system would have inertance I, and with Orifice 1
closed and Orifice 2 open the inertance would be I,, as shown in Figure 4-8. Opening both valves
adds an additional degree of freedom to the system, and a combination of two absorbers is

achieved.

lefr= 11 lefr =12 lefr = l1la/(11+1)

Figure 4-8. lllustration of the three parallel inertia track configurations.

The total volumetric flow rate Q of the fluid through the circuit is
Q=01 +0Qy (4.35)

where Q, and @, are the volumetric flow rates through inertia tracks 1 and 2, respectively. The
pressure difference across both branches of the inertia track is

2p = 1,01 + R1Q; = 1,Q2 + R,Q, (4.36)
where R, and R, are the flow resistances through orifices 1 and 2, respectively, and Q; and p is
the fluid pressure developed in the bottom F?MC tubes. For simplicity, losses in the flow through
the inertia tracks are assumed to be negligible. Taking the Laplace transforms of Egs. (4.35) and

(4.36) and solving for Q(s) gives

0=2 ((I, + L)s + R + R,) 437)

I11,5% + (LR, + I,R,)s + R{R,

81

Taking the Laplace transform of Eq. (2.44), solving for @, and combining the result with Eq.

(4.37) gives
(I, +L,)s+ R, +R,
- X5 — Ps = 2P . 4.38
MpCaes T TpCal’s (111252 + (LR, + ,R,)s + RiR, (4.38)
Solve Eq. (4.38) for pressure P:
po_ 5 I1,s% + (I;R, + I,R{)s? + RyR;s ¥
- © (4.39)

Cy 2 2
LiI;s3 4+ (IR, + I;Ry)s? + <R1R2 + TpCs (I, + 12)> s+ TpCa (R +Ry)

Taking the Laplace transform of Eq. (2.43) and combining with Eq. (4.39) results in the following
transfer function, which is similar to Eq. (2.45):

Fi(s) _ N3s®+ Nps? + Nys + Ny

= (4.40)
Xi(s) D3s®+D,s?+ Dys+ D,
where

Ny = <L (R, + R,) 4.4

0 _an4 1 2) (4.41)
CC3 2¢q
Nl = (Cl - _) R1R2 + (11 + 12), (442)
Cy Ny Cy
C2€C3
N, = (Cl - c_) (I4R; + I1Ry), (4.43)
4
C2C3
N3 == (Cl - _> 1112, (444)
Cy
Dy = (Ry + Ry), (4.45)
pCa
2
D; = RiR, + (I + 1), (4.46)
NyCy
DZ = IlRZ + Ile, (447)
and

D3 = 1112. (448)

82

Through a process similar to that outlined in Sections 2.3 and 2.4, the fluid model Eq. (4.40) is

integrated into the structural model. Eq. (4.40) is a more general form of Eq. (2.45), and the latter

can be recovered by taking the limit as either R, or R, goes to infinity. This model of the parallel

inertia tracks is implemented in MATLAB using the properties listed in Table 4-2 to obtain the

frequency response plot in Figure 4-9.

Table 4-2. Inertia track dimensions used for tunable inertia track study.

Absorber Parameter Value
Inertia Track 1
- Inner Diameter [mm] 4.32
- Length [m] 1.7
Inertia Track 2
- Inner Diameter [mm] 4.32
- Length [m] 0.365

Tip Displacement per Unit Tip Force [dB]

-120F — Tailboom .
.......... = = 15 4_

1301 R,=0, iz 107 kg/m™-s| |
————— R.=10"" R,=0 kg/m'4s

-140 - vt ? -
- Rl_Rz_O

'150ﬁ P E H £ r - r . l

5 8 12 20 30 50

Frequency [Hz]

Figure 4-9. Frequency response for various orifice settings.

83
The R, = 10%° % (essentially closed orifice) response has a deep anti-resonance flanked by two
resonance peaks characteristic of a vibration absorber. The opposite configuration, with R; =
1015 % and R, = 0, shows no response attenuation at the first mode and an additional “notch”

in the response at 11 Hz, the frequency to which inertia track 2 is tuned. The third case, with no
losses in either inertia track, shows a valley at a slightly higher frequency of 12.2 Hz. Since
R; = R, = 0 in this case, the effective inertance

;o hl
L+

(4.49)

Figure 4-8 shows that, with a parallel inertia track configuration, it is possible to tune an absorber

to three distinct frequencies.

_401- — Tailboom gy
— R =0
50+ ’ |
.......... R,=10° kg/m*-s
60 i A 10 4 |
I,|I ,"l ————— R2: 10 kg/m 'S
-70~ i A R2=1015 kg/m4-s |

Tip Displacement per Unit Tip Force [dB]

=

w

o
T

r r r

5 8 12
Frequency [Hz]

Figure 4-10. Frequency response for open Orifice 1 and partially open Orifice 2.

84
Figures 4-10 and 4-11 show the system response for partially closed orifices. In Figure 4-10,

Orifice 1 is completely open, and the responses for various resistance values for orifice 2 are

depicted. The response for R, = 10%° % is reproduced from Figure 4-9. As orifice 2 is opened

such that R, = 101 %, the sharp resonances become heavily damped and damper-like behavior
is observed at the first mode. Simultaneously, an additional “notch” is formed at 12.2 Hz. As R,
is further reduced to 108 % and 0, the low-frequency absorber diminishes and the 12.2 Hz
absorber becomes more prominent. Thus, different combinations of response attenuation at two
frequencies can be achieved by partially closing both orifices. For instance, the R, = 10° %
case can reduce vibration amplitude at 12.2 Hz while still achieving significant damping at the
first mode. Similarly, Figure 4-10 shows that different combinations of vibration reduction can be

achieved between the two higher frequencies.

Tip Displacement per Unit Tip Force [dB]

-100 _ : 1
— Tailboom T,

110 R,=10%° kg/m*-s LE T

120+ memem Rl:1015 kg/m®-s - i
sames R =0

-130+ 1 : .

140 5 8 12

Frequency [Hz]

Figure 4-11. Frequency response for open Orifice 2 and partially open Orifice 1.

85

4.1.8 Design Process Summary

Identify Select a flexible Solve for I,. based on
mounting - bladder with lowest c, —3 | performance requirement e
location for and minimum feasible using Egs. (4.20, 28, and 34)
F2MC tubes o to maximize —c,C;
Try a softer Select the smallest
Validate design bladder to reduce npsuch that lgp
experimentally inertia track size leg@nd compute
Rep using Egs. Infeasible,
A (4.32) and (4.33) revise

specification

Y

Find smallest No

ek with Has a softer

Inertia track wi <€ bladder been tried?
ror lp such that Yes

l=lien R= Rep

Figure 4-12. Flow chart summarizing absorber design process.

A general design process for F"MC-based absorbers is outlined in this section and
summarized in the flowchart in Figure 4-12. The first step is to determine suitable mounting
location for the F°MC tubes by identifying areas of high bending strain in the structure. F"MC
tubes perform optimally when placed in regions of maximal bending strain, and therefore mode
or response shapes of the structure should be obtained at the target frequency. Mode shape slope
plots such as the one shown in Figure 4-1 can be used to determine F"MC tube placements that
maximize fluid pumping. Care should be taken to ensure that the F2MC tubes are attached to solid
structural elements to maximize the coupling between the fluid and the structure. Areas with
bulkheads or stringers, for instance, are better candidates than areas with just skin.

Once suitable regions of maximum bending strain are identified, the F"MC bladder must

be chosen. Initially, a flexible bladder with the lowest compliance c, should be selected, as lower

86
compliance results in better performance. Additionally, the largest practical F"MC tube diameter
and the minimum feasible fiber angle for the F°MC tube should be selected. The effective

absorber mass parameter m, « _ngcz c3ly illustrates the importance of selecting a large but

practical tube diameter and small fiber winding angle. The larger the quantity - c,c3, the smaller
the inertance required to tune the absorber. As shown in Figures 4-13 and 4-14, —c,c5 increases
with FAMC tube inner radius and lower fiber winding angle. That is, having larger F"MC tubes
with smaller fiber winding angles reduces the inertance required from the inertia track. In
particular, smaller fiber winding angles can provide improved performance for no weight penalty.

Initially, the largest feasible diameter and smallest winding angle should be chosen.

x10°

2+ -

1.8~ y

1.6~ y

1.2~ y

-C,*Cy [m4]

0.8~ y

0.6~ y

0.2~ y

r r r r

5 10 15 20 25
Inner Radius [mm]

Figure 4-13. - ¢, 5 as a function of F"MC tube inner radius.

87

4
-c,*cy [m]
S

r r r r r r r r r

15 16 17 18 19 20 21 22 23 24 25
o [deq]

Figure 4-14. —c,c5 as a function of fiber winding angle.

In the next step in Figure 4-12, the inertance required to achieve the performance
specification is solved for. Given an amplitude requirement, Eq. (4.34) allows one to solve for the
mass ratio u, and therefore the required absorber mass parameter m,. From Eqg. (4.20), the
inertance I, required to meet the performance specification can be determined in terms of the
number of FAMC tube pairs n,. Additionally, we solve for the inertance required to tune the
absorber in terms of n,, using Eq. (4.32).

Next, the smallest n,, such that Ir,, > I,.4 is chosen. If this condition cannot be met for
any practical value of n,, then the performance specification is infeasible. That is, a specific
inertance value I, is needed to optimally tune the absorber, but this inertance value is not
sufficient to meet the performance demands. On the other hand, if the I¢_, > I, condition is

met, then the resulting absorber will meet or exceed the performance requirement. From a purely

88
practical standpoint, single large tubes may save weight since less plumbing hardware is required
to connect the top and bottom tubes. If the tubes are mounted internally, having multiple smaller-
diameter tubes may be advantageous since a greater separation from the tailboom neutral axis is
achieved.

After n,, is selected and the the Ir,, = I,..4 condition is met, then the resulting absorber

will be heavier and over-perform. Therefore, in this case a softer bladder may be explored to
reduce the optimal inertance. If a softer bladder has not been tried before, then one may return to
the second step of Figure 4-12 and repeat the process with a softer bladder. If not, proceed to the
next step.

Finally, the optimal resistance value is calculated according to Eq. (4.33). Inertia track
dimensions can then be determined using Egs. (4.32) and (2.41). The smallest diameter possible

should be selected that still satisfy I, = Ipr and R = Rpp to ensure that the inertia track is as

light as possible. If desired, this process can be repeated for parallel inertia tracks.

Using this process, an approximately tuned and sized system can be designed, even
without a full model of the structure. In practice, the inertia track in particular may need to be
tuned to determine the optimal parameters empirically. If a system model is available, this design
process can be used to generate approximate solutions, which can be used as starting points for

parameter searches.

4.2 Comparison to Existing Technology

The main advantage of the F"MC tube over existing fluidic technology is its pumping
efficiency. A conventional piston exerts an axial force proportional to its cross-sectional area and

the fluid pressure according to

89

E, = pA, (4.49)
where p is the fluid pressure, A is the piston cross-sectional area, and F, is the piston axial force.
This equation is identical to the FPMC Eq. (2.43), except with F"MC stiffness parameter ¢; = 0
and ¢, = A. Furthermore, the flow rate of fluid pumped by the piston is proportional to the time
derivative its stroke distance x:

Q, = A%, (4.50)
where Q,, is the volumetric flow rate out of the piston. Eq. (4.50) is identical to the F2MC Eq.
(2.44) except that pumping coefficient c; = A and compliance ¢, = 0. With no compliance, a
piston-based treatment may either be used as a pure dashpot or be connected to a fluid
accumulator to create a tuned absorber. Combining Eqgs. (4.49) and (4.50) and applying the

Laplace transform to the result, the piston transfer function is obtained:

B(5)
X(s)

AZ
=np— (Irs* + Rs), (4.51)
where F,(s) = L[F,]| and X(s) = L[x]. Note that the equivalent F*MC transfer function from Eq.

Fi(s)
~ (SS) = —npczzﬁ(lfs2 +Rs). (4.52)

Typical values for ¢, and c3, such as for the tubes used in the PSU tailboom structure [56], are

¢, = 0.0022m? and c; = —0.00164 m2. So, c,c; = 3.61 X 107% m?2. For an equivalent piston
of Eq. (4.51) to achieve the same performance, its diameter would need to be 49.2 mm, in
comparison to the 9.5 mm diameter of the F"MC tubes. A conventional piston with a diameter of
9.5 mm would have an A? value nearly 720 times smaller than - c,c5. Comparing coefficient A
from Eq. (4.50) to - c5 in Eq. (2.44), one can see that, for a low-compliance F’MC tube, a piston
of the same diameter would require a stroke distance over 23 times longer than the F"MC tube’s

to achieve the same fluid pumping.

90

The FMC tube fluid mass my, , . is calculated by

Mt e = TTE L (4.53)
where 7, is the F’MC tube inner radius and I, is the F"MC tube effective length. The remaining
fluid mass in the fluidic circuit is estimated using

my, . =zl (4.54)
For the PSU tailboom experiment, m;_, = 0.1955 kg and m;_ . = 0.2017 kg, for a total
fluid mass of 0.397 kg. Given that an equivalent piston would require the same inertia track and
26.8 times the cross-sectional area as the F>MC tube, the total fluid weight estimate would be
0.1955 kg x 26.8 + 0.2017 kg = 5.45 kg, or nearly 14 times the fluid weight. Assuming that
the remaining hardware weight is the same, the total weight for the piston absorber is
approximately 7.7 kg. In fact, the weight of the fluid alone exceeds the weight penalty goal of
4.55 kg (10 Ib). In practice, the piston system would be even heavier, as the piston and cylinder
would be made of heavier materials than the F"MC tube.

While performance/weight comparisons with other devices are difficult to make since
they are tested on different structures and since much of the important data is proprietary.
However, a comparison can be made between the F2MC-absorber, an equivalent piston, and the
active controller developed by Heverly [6], which was tested on the same PSU tailboom.
Vibration amplitude reduction at the first mode per added weight is calculated for each system

and summarized in Table 4-4:

Table 4-4. Efficiency of Various PSU Tailboom Vibration Treatments

Treatment % Reduction/Mass [1/kg]
F°MC Absorber 26.1
Piston Absorber 9.1
Piezo Actuators (without power supply) 259

Piezo Actuators (with power supply) 2.64

91

Active control offers a clear performance advantage over passive methods, as can be seen in
Heverly’s work, with up to 96% vibration suppression possible using 0.37 kg of stack actuators.
However, in practice the stack actuators require amplifiers to provide power. Given that the
amplifier used in the experiments weigh 9 kg per channel, in the worst case 36 kg of amplifiers
would need to be added. Moreover, these weight estimates do not account for the weight of the
required attachment hardware, wiring, and computer. The significant weight added by these
amplifiers may be mitigated to some extent by using existing power sources on the aircraft or
perhaps through more advanced and lightweight electronics technology. The added weight may
also be justified if significant vibration reduction is required over a broad frequency range or for
different flight conditions.

Per added weight, the F*MC-based absorber outperforms the conventional piston by a
factor of three, and the worst-case active controller by an order of magnitude. The experimental
F2MC absorber could be made even lighter, as the prototype hardware is over-engineered and
designed for flexibility rather than weight. For instance, the copper inertia track may be
substituted for a rigid but lighter-weight plastic, and the travel distance of the end fittings may be
reduced significantly. Regardless, it is clear that F?MC tubes enable fluidic vibration treatment

based on structural bending strain; with conventional pumpers, this is simply impractical.

92

Chapter 5

Conclusions and Future Work

5.1 Major Contributions

For the first time, a model of a F°MC-based vibration absorber is integrated into a
realistic tailboom structure. The novel design uses four F°MC tubes in the coupled configuration,
eliminating the need for the fluid accumulator used in previous experiments by Zhu et al. [41]-
[42]. Scarborough’s model of braid-sheathed F°MC tubes [44] is modified to account for
compliance of the tube inner bladder. A test stand comprising prototype F?MC tubes integrated
into a lab-scale tailboom structure was developed. Static tests performed on the test stand verify
the pumping and actuation capability of the F°MC tubes. Component-level tests are performed to
characterize the tubes’ pumping ability and compliance. In turn, these results are used to
determine an appropriate F2MC tube bladder design.

A tuned vibration absorber weighing 2.7 kg (6 Ib) is shown experimentally to reduce
vibration amplitude at the first vertical bending mode of the lab-scale tailboom structure by over
70%. This is the first demonstration of the feasibility of using F°MC tubes to reduce vibration in a
complex and realistic structure. Experiments also show that a partially closed orifice results in a
damped absorber that adds 7.8% damping to the first mode. Importantly, the experimental results
show excellent correlation with model predictions. For the first time, experiments at various fluid
pre-pressures are performed to highlight the importance of sufficient pre-pressurization on
absorber performance. Tests with various tailboom forcing amplitudes reveal the nonlinearity and
excitation amplitude-dependence of the tailboom structure.

Through a simplified 2-DOF analogy and non-dimensionalization, approximate design

rules using the fixed-point theory are presented for the F"MC-absorber. The optimal fluid

93
inertance and resistance values are shown in Egs. (4.32) and (4.33). The design rules and
mechanical analogy are used to create a design process, summarized in Figure 4-12, for a F*MC-
based absorber, whereas previous studies by Zhu et al. relied on parameter searches [41]-[42].
Practical considerations regarding placement of the F°MC tubes, as well as a method of
identifying high-bending strain regions, are discussed. An iterative process is proposed in which
the lowest-compliance bladder is initially selected, and lower-compliance bladders are tested until
the resulting tuning inertance exceeds or meets the inertance required to satisfy the performance
specification. It is revealed that the inertance required is inversely proportional to number of
F?MC tube pairs squared, that smaller fiber winding angles and larger tube diameters result in
reduced inertance requirement. The tradeoffs between single and multiple tubes is discussed.
Approximating the tailboom using only one term in the Ritz series discretization, the resulting
optimal absorber parameters show excellent agreement with those obtained through a parameter
search. Using five terms in the Ritz series revealed a 20% and 12 % discrepancy between the
fixed-point and optimal values for inertance and resistance, respectively. Thus, for complicated
structures like the tailboom, a parameter search in the neighborhood of the predicted optimum
may be needed. The tuning rules presented greatly reduce the computational resources required to
produce an optimal absorber design, whereas previous research by Zhu et al. [41]-[42] relied on
tuning via Monte Carlo simulations over a wider parameter space. The design rules are tested via
simulation by designing an absorber for the OH-58C tailboom.

A tunable fluidic circuit using two inertia tracks in parallel is proposed. Analysis of the
circuit shows that, given negligible losses in the circuit, the absorber can be tuned to provide full
absorption at one of three frequencies, or a combination of partial absorption at two different
frequencies.

Finally, the F"MC-absorber performance and weight are compared against an absorber

using conventional pistons. The F?MC-absorber is shown to outperform the piston-based device

94
on a per-added weight basis, conservatively, by a factor of three. A similar comparison is done
with an active controller using piezoelectric actuators. While the active method could outperform
the F°MC-absorber by a factor of ten for the best-case scenario, this figure ignores the weight
added from attachment hardware, wiring, computer, and most importantly, the amplifiers for the
actuators. In the worst-case scenario, it is estimated that the F2MC-absorber could outperform the

active approach by a factor of ten.

5.2 Ongoing and Future Work

The end goal of this research is a demonstration of F"MC technology on a full-scale, real-
life structure. This involves designing, fabricating, and testing a F*MC-absorber on an OH-58C
tailboom at the U.S. Army Research Laboratory at Aberdeen Proving Ground. An analytical
model of a full-scale OH-58C tailboom has been developed and used to produce preliminary
F2MC-ashorber designs in preparation for future tests. Various dynamic experiments will be
carried out not only to demonstrate vibration reduction performance but also to verify the
predictive capability of the model. A successful full-scale demonstration will bring F°MC
technology closer to widespread adoption in aerospace applications, where reducing weight

penalty is a major priority.

5.2.1 OH-58C Tailboom Model Validation and Future Improvement

The full-scale tailboom test stand has been built and modally tested. Using an impact
hammer to excite the tailboom vertically at the tip, frequency response plots and mode shapes
have been obtained. Preliminary experimental results, shown in Figure 5-1, show some agreement

between model predictions and experiment. However, the OH-58C structure is far more

95
complicated than the PSU tailboom, and modifications could be made to the model to improve
agreement. Furthermore, the OH-58C helicopter is resting on its landing gear, and therefore the
tailboom is not cantilevered in the same fashion as the PSU tailboom. The mode shown in the
experimental curve of Figure 5-1 is likely a rigid tailboom mode caused by rocking of the entire
helicopter on its skids. In future work, the tailoboom model could be modified to account for this,
possibly by modeling the fuselage, to which the tailboom is cantilevered, as a large mass on a

linear and/or torsional spring.

40 [[[-
=== Baseline Tailboom Theory
= “===* Baseline Tailboom Experiment
© -50ﬁ 0: “ A
(] “’. “‘
L -60 3 !
= s B
= % v,
2 . S he
g ~70r P S \5 1
E “‘ :. YA “ ‘;‘
L] * 49
S oSS ™ £y
5 80" L 4 N o
L ;f: \\ %oy .: ”‘
g. --ﬂ“"’ b N “‘ .:“ . “‘
= === \\ RS =,
\
\\\
i r r ¥ r
2 5 8 12

Frequency [Hz]

Figure 5-1. Comparison of experimental and theoretical untreated OH-58C tailboom frequency
responses.

96
Additionally, a static actuation test has been performed on the tailboom. This test,

identical to that performed on the PSU tailboom in Section 3.2.2, is conducted by closing the
inertia track orifice and pressurizing the bottom FZMC tubes. As the bottom tubes are pressurized,
they contract axially and thus cause the tailboom to deflect downward. This deflection is
measured using a laser vibrometer, and the result is shown in Figure 5-2. Based on Figure 5-2, it
is clear that the F°MC tubes have authority over the tailboom structure. While there is hysteresis
in the structure as evidenced by the different paths taken by the loading and unloading curves,
and the authority seems to taper off at higher pressures, the F°MC tubes overall show more
authority than predicted by the model. Indeed, as can be seen in Figure 5-1, the model is statically
stiffer than the experiment. Based on these observations, it may be appropriate to slightly tune up

the structural stiffness of the OH-58C model since the structure is clearly softer than initially

thought.
x 10
1 F L L |8 L 8 L |5 L
Model Prediction
= .
0/'\ ©— Loading Experiment
\ — % Unloading Experiment
Er 1
E
5
£ -2 A
)
Q
©
o
a 3]
©
L
i<
g 4 :
5~ 4
r r r r r r r \:\}‘ﬂf\-‘

-6 C
0 100 200 300 400 500 600 700 800 900
Pressure [kPa]

Figure 5-2. Experimental and theoretical OH-58C tailboom static actuation curves.

97

5.2.2 Full-Scale Dynamic Tests

The OH-58C tailboom has been built and is illustrated in Figure 5-3. In identical fashion
to the PSU experiment, F°MC tubes are crimped onto stainless steel end fittings, which in turn
connect to an external fluidic circuit made of rigid plastic tubing. The threaded end fittings are
tightened using nuts onto aluminum L-brackets, shown in Figure 5-4, which are bolted onto the
outside of the tailboom for ease of installation and observation. The brackets are riveted onto

structural elements on the tailboom to maximize coupling between the fluid and the structure.

Drive
Shaft

Tunable Orifice

Fuselage

FMC tubes

i Inertia Track
: Skids

Figure 5-3. Schematic diagram of the OH-58C tailboom test stand.

Tailboom

- | / ‘
1 e—
_ . _—D
R)
= ™
" DETAIL A
\Q SCALET.5:1

R=10.04 in. 1.77

Figure 5-4. Sample drawing of L-brackets used to attach F*MC tubes to the tailboom.

98

The F?MC tube length is chosen based on geometric constraints of the tailboom as well

as on experimentally obtained mode shapes, shown in Figure 5-5. For maximum bending strain at

the first mode, F2MC tubes extending toward the tip from the fuselage slightly forward of the root

are most desirable. A distance of 1.18 m between the mounting L-brackets is selected to ensure

that the brackets are secured onto structural elements instead of the skin only. The F°MC tube

diameter and inertia track dimensions are selected using the MATLAB model.

x 107 Vertical Bending Mode Shapes

20 T T T T T T T T

1st Mode (Model) 4
""" o+ 1st Mode (Experiment) 7
150 =+=e=-=2nd Mode (Experiment) //
~==== Rigid/Rocking Mode (Experiment) e

10

Im[Displacement] [m]

0.5 0 0.5 1 15 2 25 3 35
Axial Position [m]

Figure 5-5. Experimental and theoretical (first mode only) mode shapes of the OH-58C tailboom.

Table 5-1. Summary of proposed full-scale absorber parameters.

Absorber Parameter Value
F°MC tube
- Length [m] 1.05
- Quter Diameter [mm] 11.1
- Bladder Thickness [mm] 1.59
- Bladder Material Latex Rubber
- Fiber Winding Angle [deg] 18
- Fiber Material Stainless Steel
Inertia Track
- Inner Diameter [mm] 4.32
- Length [m] 1.43

Weight Estimate [kg] (Ib)

3.8 (8.4)

99
Using the design parameters from Table 5-1, the frequency response in Figure 5-6 is
obtained. The tailboom has a sharp resonance peak around 5.5 Hz, its first vertical bending mode.
With the F"MC-based tuned absorber installed, this resonance peak amplitude is reduced by
nearly 76%. Having demonstrated control authority and designed a promising absorber through
simulation, the next logical step in this research is to demonstrate performance experimentally on
the tailboom. The improved model proposed in Section 5.2.1 must also be validated against the

experimental data.

70— Tailboom
.......... FZMC-TaiIbOOm

-100: r r
OO2 5 8

Frequency [Hz]

Tip Displacement per Unit Tip Force [dB]

Figure 5-6. Simulated OH-58C frequency response plot with and without F*MC tubes.

100
Longer and wider F"MC tubes provide better performance, but add weight. The FPMC
tube length is constrained by the geometry of the tailboom, and the tube diameter is chosen to
produce sufficient vibration control without exceeding the absorber weight limit of 10 Ibs. The
preliminary absorber design parameters are summarized in Table 5-1. The inertia track
dimensions are selected to provide the inertance required for the fluid to absorb vibration at the
first vertical bending mode. Furthermore, the same fluid used in the lab-scale tailboom dynamic

experiments is used for its high density and relatively low viscosity.

5.2.3 Design Code to Minimize Weight

The design process described in Section 4.1.8 and summarized in Figure 4-12 does not
necessarily result in the lowest-weight solution, or the most weight-effective one. To a limited
extent, the process aims to reduce weight; for example, to minimize inertia track weight it calls
for trying different bladder materials until one with the maximum possible compliance is found.
However, some tradeoffs like the number of F°MC tube pairs are not considered. For instance,
having more pairs of tubes may save weight compared to fewer but with a larger track. It is not
immediately clear how having multiple tubes will affect the system weight due to the added
fittings and other hardware.

One potentially useful tool could consist of the tailboom simulation code and a database
of various component weights. A tool could be developed that accounts for the weight of not just
the fluid and F°MC tubes but also components such as fittings, for any arbitrary configuration of
F2MC tubes and inertia tracks. Such a tool would allow one to obtain a clearer picture of the
weight-related tradeoffs, whereas currently the design process simply meets a performance
specification. Furthermore, the code could be used for parameter searches to obtain an optimally

lightweight solution. For instance, such a code could determine the extent to which a lighter fiber

101
material could be used to replace the stainless steel fibers. In this case, a parameter search reveals
that a fiber with an elastic modulus three orders of magnitude lower than stainless steel’s could be
used with no noticeable performance reduction. Much lighter fiber materials can thus safely be
used. This type of analysis would be a tremendous benefit to implementing an absorber in real
life applications. A weight-optimized FZMC-absorber has the added benefit of adding minimal
weight to the root of the tailboom. Unlike conventional mechanical absorbers, which would need
to be placed as far to the rear as possible to capitalize on the larger vibration amplitudes there, the
F2MC-absorber minimally disrupts the center of gravity of the helicopter, requiring less

counterweight in the front of the aircraft.

102

Bibliography

[1] Bielawa, R.L., 1992, Rotary Wing Structural Dynamics and Aeroelasticity, Washington DC,
American Institute of Aeronautics and Astronautics, AIAA Education Series, pp. 163-208.

[2] Krysinski, T., and Malburet, F., 2007, Mechanical Vibrations: Active and Passive Control,
ISTE, Newport, CA, pp. 253-318.

[3] Loewy, R.G., 1984, "Helicopter Vibrations: A Technological Perspective," Journal of the
American Helicopter Society, 29(4), pp. 4-40.

[4] Bansemir, H., Bongers, B., 2001, Eurocopter Deutschland GmbH, Munich, Germany, U.S.
Patent No. 6286782.

[5] duBois, J.L., Lieven, N.A., and Adhikari, S., 2007, “Adaptive Passive Control of Dynamic
Response Through Structural Loading,” AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics, and Materials Conference, Honolulu, HI.

[6] Heverly, D.E., 2002, “Optimal Actuator Placement and Active Structure Design for Control of

Helicopter Airframe Vibrations,” PhD Thesis, Pennsylvania State University.

[7] de Silva, C.W., ed., 2005. Vibration and Shock Handbook, CRC Press, Boca Raton, FL, pp.
23-3.

[8] Ogata, K., 2004. System Dynamics, Pearson Prentice Hall, Upper Saddle River, NJ, p. 441.

[9] Flannelly, W. G., 1967, “Dynamic Antiresonant Vibration Isolator,” U.S. Patent No.
3,322,379.

[10] Halwes, D. R., 1980. “LIVE — Liquid Inertia Vibration Eliminator,” Proc. American
Helicopter Society 36™ Annual Forum, Washington, D.C.

103
[11] McGuire, D. P., 1994, “Fluidlastic Dampers and Isolators for Vibration Control in
Helicopters,” Proc. American Helicopter Society 5" Annual Forum, American Helicopter
Society.

[12] Pfeiffer, F., 2008, Mechanical System Dynamics, Springer-Verlag, Berlin, p. 76.

[13] Johnson, C.D., 1995, “Design of passive damping systems,” Journal of Mechanical Design,
117(B), pp. 171-176.

[14] Viana, F.A.C., Steffen Jr., V., 2006, “Multimodal vibration damping through piezoelectric
patches and optimal resonant shunt circuits,” Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 28(3), pp. 293-310.

[15] Preumont, A., 2011, Vibration Control of Active Structures, Springer-Verlag, Berlin, p. 5.

[16] Frahm, H., 1911, “Device for Damping Vibrations of Bodies,” U.S. Patent No. 989,958.

[17] Roberson, R. E., 1952, “Synthesis of a Nonlinear Dynamic Vibration Absorber,” Journal of
The Franklin Institute, 254(3), pp. 205-220.

[18] Hunt, J. B., and Nissen, J. C., 1982, “The Broadband Dynamic Vibration Absorber,” Journal
of Sound Vibration, 83(4), pp. 573-578.

[19] Den Hartog, J. P., 1985, Mechanical Vibrations, Dover Publication, Mineola, NY.
[20] Rusovici, R., Dosch, J. J., and Lesieutre, G. A., 2002, “Design of a Single-Crystal
Piezoceramic Vibration Absorber,” Journal of Intelligent Material Systems and Structures,

13(11), pp. 705-712.

[21] Igusa, T., and Xu, K., 1994, “Vibration Control Using Multiple Tuned Mass Dampers,”
Journal of Sound and Vibration, 175(4), pp. 491-503.

104

[22] Rana, R., and Soong, T. T., 1998, “Parametric Study and Simplified Design of Tuned Mass
Dampers,” Engineering Structures, 20(3), pp. 193-204.

[23] Sun, J. Q., Jolly, M. R., and Norris, M. A., 1995, “Passive, Adaptive and Active Tuned
Vibration Absorbers: A Survey,” ASME Journal of Mechanical Design, 117(B), pp. 234-242.

[24] Soong, T. T., and Dargush, G. F., 1997, Passive Energy Dissipation Systems in Structural
Engineering, Wiley, New York, p. 3.

[25] Karnopp, D., Crosby, M.J., and Harwood, R.A., 1974, “Vibration control using semi-active
force generators,” ASME Journal of Engineering for Industry, 96, pp. 619-626.

[26] Walsh, P. L., and Lamancusa, J. S., 1992, “A Variable Stiffness Vibration Absorber for
Minimization of Transient Vibrations,” Journal of Sound and Vibration, 158(2), pp. 195-211.

[27] Koo, J. H., Ahmadian, M., Setareh, M., and Murray, T., 2004, “In Search of Suitable Control
Methods for Semi-Active Tuned Vibration Absorbers,” Journal of Vibration Control, 10(2), pp.
163-174.

[28] Housner, G. W., Bergman, L. A., Caughey, T. K., Chassiakos, A. G., Claus, R. O., Masri, S.
F., Skelton, R. E., Soong, T. T., Spencer, B. F., and Yao, J. T. P., 1997, “Structural Control: Past,
Present, and Future,” Journal of Engineering Mechanics, 123(9), pp. 897-971.

[29] Williams, K., Chiu, G., and Bernhard, R., 2002, “Adaptive-Passive Absorbers Using Shape-
Memory Alloys,” Journal of Sound and Vibration, 249(5), pp. 835-848.

[30] Hagood, N. W., and von Flotow, A., 1991, “Damping of Structural Vibrations With
Piezoelectric Materials and Passive Electrical Networks,” Journal of Sound and Vibration,
146(2), pp. 243-268.

[31] Hollkamp, J. J., and Starchville, T. F. Jr., 1994, “A Self-Tuning Piezoelectric Vibration
Absorber,” Journal of Intelligent Material Systems and Structures, 5(4), pp. 559-566.

105

[32] Davis, C. L., Lesieutre, G. A., and Dosch, J., 1997. “A Tunable Electrically Shunted
Piezoceramic Vibration Absorber,” Proc. SPIE, 3045, pp. 51-59.

[33] Deng, H., Gong, X., and Wang, L., 2006, “Development of an Adaptive Tuned Vibration
Absorber With Magnetorheological Elastomer,” Smart Materials and Structures, 15(5), pp. 111-
116.

[34] Yalla, S. K., and Kareem, A., 2003, “Semiactive Tuned Liquid Column Dampers:
Experimental Study,” Journal of Structural Engineering, 129(7), pp. 960-971.

[35] Gao, H., Kwok, K. C. S., and Samali, B., 1997, “Optimization of Tuned Liquid Column
Dampers,” Engineering Structures, 19(6), pp. 476-486.

[36] Heverly, D.E., Wang, K.W., and Smith, E.C., 2001, “An Optimal Actuator Placement
Methodology for Active Control of Helicopter Airframe Vibrations,” Journal of the American
Helicopter Society 46(4), pp. 251-261.

[37] Strehlow, H., Rottmayr, H., Duerr, J.K., and Zaglauer, H.W., 2008, “Method for Damping
Rear Extension Arm Vibrations of Rotorcraft and Rotorcraft with a Rear Extension Arm
Vibration Damping Device,” U.S. Patent No. 2008/0173754A1.

[38] Staple, A.E., and MacDonald, B.A., 1993, “Active Vibration Control Systems,” U.S. Patent
No. 5219143.

[39] Gaffey, T.M., Kidd, D.L., and Grimes, M.L., 1988, “Nonlinear Vibration Absorber,” U.S.
Patent No. 4766984.

[40] Vuillet, Alain, and Zoppitelli, Elio, 1998, “Device for Reducing the Vibration on the
Structure of a Helicopter,” U.S. Patent No. 5775637.

[41] Zhu, B., Rahn, C. D., and Bakis, C. E., 2015, “Fluidic Flexible Matrix Composite Damping

Treatment for a Cantilever Beam,” Journal of Sound and Vibration, 340, pp. 80-94.

106

[42] Zhu, B., Rahn, C. D., and Bakis, C. E., 2015, “Fluidic Flexible Matrix Composite Vibration
Absorber for a Cantilever Beam,” Journal of Vibration and Acoustics, 137(2):021005, 11 p, 2015.

[43] Lotfi-Gaskarimahalle A., Scarborough Il1, L. H., Rahn, C. D., and Smith, E. C., 20009.
“Fluidic Composite Tuned Vibration Absorbers,” Proc. ASME Conference on Smart Materials,
Adaptive Structures and Intelligent Systems, SMASIS2009-1349, pp. 501-508.

[44] Scarborough III, L.H., Rahn, C.D., Smith, E.C., 2011, “Fluidic Composite Tunable Vibration

Isolators,” Journal of Vibration and Acoustics, 134 (1).

[45] Shan, Y., Philen, M.P., Bakis, C.E., Wang, K.W., and Rahn, C.D., 2006. “Nonlinear-Elastic
Finite Axisymmetric Deformation of Flexible Matrix Composite Membranes under Internal

Pressure and Axial Force,” Composites Science and Technology, 66(15), pp. 3053-3063.

[46] Zhu, B., Rahn, C.D., and Bakis, C.E., 2011. “Tailored Fluidic Composites for Stiffness or
Volume Change,” Proc. ASME 2011 Conference on Smart Materials, Adaptive Structures and
Intelligent Systems, SMASIS 2011-4962, Scottsdale, A.Z.

[47] Liu, W. and Rahn, C. D., 2003. “Fiber-Reinforced Membrane Models of McKibben
Actuators,” Journal of Applied Mechanics, Transactions ASME, 70(6), pp. 853-859.

[48] Shan, Y., Philen, M., Lotfi, A., Li, S., Bakis, C. E., Rahn, C. D., and Wang, K. W., 2009.
“Variable Stiffness Structures Utilizing Fluidic Flexible Matrix Composites,” Journal of

Intelligent Material Systems and Structures, 20, pp. 443-456.

[49] Zhu, B., Rahn, C. D., and Bakis, C. E., 2012. “Actuation of Fluidic Flexible Matrix
Composites in Structural Media,” Journal of Intelligent Material Systems and Structures, 23(3),
pp. 269-278.

[50] Philen, M., Phillips, D., and Baur, J., 2009, “Variable Modulus Materials based upon F ’MC
Reinforced Shape Memory Polymers,” Proc. 50" AIAA/JASME/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference., Palm Springs, C.A., pp. 461-470.

107

[51] Li, S., and Wang, K.W., 2012, “On the dynamic characteristics of biological inspired
multicellular fluidic flexible matrix composite structures,” Journal of Intelligent Material Systems
and Structures, 23(3), pp. 291-300.

[52] Miura, K., Rahn, C.D., and Smith, E.C., 2014. “Passive Tailboom Vibration Control Using
Fluidic Flexible Matrix Composite Tubes,” Proc. 55th AIAA/ASME/ASCE/AHS/SC Structures,
Structural Dynamics, and Materials Conference, 2014-1368, National Harbor, M.D.

[53] Miura, K., Krott, M.J., Rahn, C.D., Smith, E.C., 2014, “Experimental Characterization of a
Tailboom with Fluidic Flexible Matrix Composite Tubes,” Proc. AHS 70" Annual Forum,
Montréal, QC, CA.

[54] Krott, M.J., Miura, K., Rahn, C.D., and Smith, E.C., 2015, “Tube Compliance Effects on
Fluidic Flexible Matrix Composite Devices for Rotorcraft Vibration Control,” Proc. 56th
AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference, 2015-
1416, Kissimmee, FL.

[55] Miura, K., Krott, M.J., Rahn, C.D., Smith, E.C., and Romano, P.Q., 2015, “Experimental
Validation of Tailboom Vibration Control Using Fluidic Flexible Matrix Composite Tubes,”
Proc. AHS 71* Annual Forum, Virginia Beach, VA.

[56] Ginsberg, J.H., 2001, Mechanical and Structural Vibrations: Theory and Applications,
Wiley, New York, pp. 25-26.

[57] Donovan, F.M., Taylor, B.C., and Su, M.C., 1991, “One-Dimensional Computer Analysis of
Oscillatory Flow in Rigid Tubes,” Journal of Biomechanical Engineering, 113(4), pp. 476-484.

[58] Chou, C.P., Hannaford, B., 1994. “Static and Dynamic Characteristics of McKibben
Pneumatic Artificial Muscles,” Proc. IEEE International Conference on Robotics and
Automation, 1994.350977.

[59] Ren, M.Z., 2001. “A Variant Design of the Dynamic Vibration Absorber,” Journal of Sound
and Vibration, 245(4), pp. 762-770.

108

[60] Liu, K. and Liu, J., 2004. “The Damped Dynamic Vibration Absorbers: Revisited and New
Result,” Journal of Sound and Vibration, 284, pp. 1181-1189.

[61] Cheung, Y.L. and Wong, W.O., 2011. “H-infinity Optimization of a Variant Design of the
Dynamic Vibration Absorber — Revisited and New Results,” Journal of Sound and Vibration,
330, pp. 3901-3912.

[62] Scarborough 111, L.H., 2014, “Dynamics of Fluidic Devices with Applications to Rotor Pitch
Links,” PhD Thesis, Pennsylvania State University.

109
Appendix A

Basis Functions for a Spring-Hinged Beam - Derivation

The spring-hinged beam is modeled as an Euler-Bernoulli beam:

EIw"" + pAw = 0, (A. 1)
where w(x, t) is the beam vertical displacement, E1 is flexural rigidity, p is the beam density, and
A is the cross-sectional area. The displacement solution is of the form

w(x,t) = W(x)el®t, (A.2)
where w is frequency and W is the shape function. Substituting the solution Eq. (A.2) into (A.1),
we obtain

W, (x) = By sin(a,x) + B, cos(a,x) + Bssinh(a,x) + B4cosh(a,x), (A.3)
with

A\ 1/4
«= (ui) a

where n denotes the n-th mode. The boundary conditions are

w(0) =0, (A.5)
W"(L) =0, (A.6)
w"(L) =0, (A.7)
and
KW' (0) = EIW"(0), (A.8)

where K; is the root spring stiffness. By applying the boundary conditions from Eq. (A.5) — (A.7),
three of the coefficients B can be determined as
B, = —B,, (A.9)

B - B, sin(a, L) — B3 sinh(a,,L)
*7 cos(ayl) + cosh(a,Ll) '

(A.10)

and

_p 1 + cos(a,L) cosh(ay,L) + sin(a,L) sinh(a,L)
17731 4 cos(a, L) cosh(a,L) — sin(a,L) sinh(a,L)’

B

The last boundary condition, Eq. (A.8), reveals the characteristic equation

an

El
1 + cos(a,L) cosh(a,L) = [cosh(a, L) sin(a,L) — cos(a,L) sinh(a,L)].

t

Taking B; = 1, the basis functions for the spring-hinged beam are

C,+ G,
Yn (X) = — - .

1 + cos(a,L) cosh(a,L) — sin(a, L) sinh(a,L)

where
C; = sin(a,x) + sinh(a,x)

+ cosh(a,L) (cosh(anx) sin(a,L) — sin(an(L — x))

+ cos(ay,L) sinh(anx))
and

C, = sinh(a,L) (cos(an (L— x)) — cos(ayL) cosh(a,x) — sin(a,L) sinh(anx)).

110

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

Appendix B

MATLAB Code

tailSim.m

111

- Reads system parameter datafrom a file, stores data into struct P
- Computes baseline tailboom system model, frequency response using bode.m
- Calls main.m once, or multipletimes if a parameter search is desired

main.m

- Computes fluid system model and combines it with structural model
- Computes frequency response of treated tailboom
- Performs time domain simulations using Isim.m if desired

- Processes experimental dataand overlaysresults with simulation plots if desired

Figure B-1. Overview of the MATLAB code structure.

function tailSim

o0 00 o° o0 A A A A° O A A A° O° O° A A o o

o

C
C
C

o o oo

0

o
°

tailSim.m

For simulating a a helicopter tailboom with fluidic devices integrated
into the structure. Performs parameter sweeps on main.m and plots

the resulting frequecy responses.

Parameters may be passed onto main.m through the cell array sweepParam.
If a parameter, such as inertance, is specified below, then main.m will
run using this overridden inertance value rather than the one specified
in the F2MC tube data spreadsheet.

If an override value is not specified, then main.m will use the values
specified in the F2MC tube data spreadsheet by default.

Kentaro Miura

Mechatronics Research Laboratory

Vertical Lift Research Center of Excellence
Pennsylvania State University

Last updated: 13 February, 2016

1c
lear all
lose all

% System configuration.

Choose system to simulate (full-scale tailboom or experiment) :
scaleTB= 'full';
caleTB= 'OH-58"';

scaleTB= 'small';

% Choose whether to account for frequency-dependence of fluid resistance
% and inertance:
res= 'const';

)

% res= 'freqgDep';

oo

Choose whether to estimate the inertance required to tune an absorber
(1: estimate 0: don't estimate):
inertEst= 1;

o

o)

% Choose whether to optimize resistance (1: optimize 0: don't optimize):
resOpt= 0;

oo

Choose tube type:
tubeType= 'F2MC';
tubeType= 'McKibben';

o

oo

Choose bladder type:

if (strcmp (tubeType, 'McKibben'))
bladderType= 'unobtainium';

bladderType= '1/32 soft rubber';
bladderType= 'piston';
bladderType= '1/16 soft rubber';
bladderType= '1/8 soft rubber';
bladderType= '1/16 durable rubber';
bladderType= '1/16 soft PVC';
bladderType= '1/16 hard PVC';

oo

o 0 o° o oP

o

nd

0

% Choose system type:
ysType= 'Fluidlastic';
sysType= 'Tailboom';

S|

oo

Choose tube and track configuration:
onfig= 'coupled';

config= 'uncoupled';

config= 'coupled tunable';

a0 Q

oo

% Choose whether to compute mode shape (l1: compute 0: don't compute):
modeShape= 0;

modeShape2= 0;

responseShapeFrequency= 5.5;

% Choose whether to debug tailboom structure mass:
massDebug= 0;

oo

% Experimental data processing setup.

% Specify whether an accelerometer or laser vibrometer was used:
measurement= 'laser';

% measurement= 'accelerometer';

oe

Specify number of data points over which to perform sliding window
filtering for experimental data (use -1 to use no averaging):
avgWindow= -1;

o\

Q

% Sensor amplifier gains:
gainAccel= 100;

gainVibe= 1;

gainLoad= 1;

% Add path in which the data files are stored:
addpath ('C:\Users\Kentaro\Dropbox\Data Files\4-10-2015")

112

113

% Specify names of files to be read:
filename{l}= 'empty with foam at valve.lvm';
filename{2}= 'open.lvm';

% filename{3}= 'r8.lvm';
% filename{4}= 'open.lvm';

oo

% Initial setup.

% Initialize variable override vector:
sweepParam= cell (1,28);
sweepParam(:)={-1};

% Initialize vector to record first two variables to be overridden:
overrideVec= [0 0];

overrideInd= 1;

oo

% Define overriding parameters.

% F2MC tube attachment points -------------------"-"-"—"-"—"—"—~—"—~—"—————————————— %
5 x1= 0;

% x2= linspace(0.2,0.25,10);

5 x2= 0.3;

oo

x2= [10.25%0.0254 0.40647];

% F2MC tube material properties —————-——-————-————————————————————————————— %
$ Ell= ;
$ E22= ;
$ vli2= ;
% v23= ;
$ Gl2= ;
$ G23= ;
% F2MC tube geometry ———————————— - - - %

o

wallThickness= [1 1]'*linspace(0.002,0.006,10);
wallThickness= [1 1]'*[.003 .0047];

innerRadius= [1 1]'*linspace(0.005,0.01,5);
innerRadius= [1 1]'*[.0127 .014];

o oo

o

o

Inertia track ———-——--——-—-—-———————— - %
portlLength= linspace(2.5,2.7,10);
portRadius= ;

oo

o

o

Fiber angle ————————————————— - %
fiberAngle= linspace(1,50,51);

oo

oo

Fluid properties —————————————————— - %
waterModulus= ;

waterDensity= ;

viscosity= ;

reynoldsNumber= ;

o0 o o°

oo

o\

Accumulator ——-—-—----—-—-----—-— - %
capacitance= ;

oe

oe

Inertance ————————— - - - - %
inertance= linspace(8.53e7,1.02e8,5);

o\

o\

Orifice Resistance --------—--———-—-——————————————————————— - %
orfRes= 0;

oe

o\

of Tubes Per Side ——————————————————— - %

114

% numTubePairs= [2 4];

%% Override F2MC variables as needed.
switch config
case {'coupled', 'uncoupled'}

if (exist('x1l','var'))
sweepParam{l}= x1;
overrideVec (overrideInd)= 1;
overrideInd= overrideInd+1l;

end

if (exist ('x2','var'))
sweepParam{2}= x2;
overrideVec (overrideInd)= 2;
overrideInd= overrideInd+1;

end

if (exist('EL11l','var'))
sweepParam{3}= E11;
overrideVec (overrideInd)= 3;
overrideInd= overrideInd+1l;

end

if (exist ('E22','var'))
sweepParam{4}= E22;
overrideVec (overrideInd)= 4;
overrideInd= overrideInd+1;

end

if (exist('vl2','var'))
sweepParam{5}= vl12;
overrideVec (overrideInd)= 5;
overrideInd= overrideInd+1l;

end

if (exist ('v23','var'))
sweepParam{6}= v23;
overrideVec (overrideInd)= 6;
overrideInd= overrideInd+1;

end

if (exist('Gl2','var'))
sweepParam{7}= G12;
overrideVec (overrideInd)= 7;
overrideInd= overrideInd+1;

end

if (exist ('G23','var'))
sweepParam{8}= G23;
overrideVec (overrideInd)= 8;
overrideInd= overrideInd+1l;

end

if (exist('wallThickness', 'var'))
sweepParam{9}= wallThickness;
overrideVec (overrideInd)= 9;
overrideInd= overrideInd+1;

end

if (exist ('innerRadius', 'var'))
sweepParam{10}= innerRadius;
overrideVec (overrideInd)= 10;
overrideInd= overrideInd+1;

end

if (exist ('outerRadius', 'var'))
sweepParam{1l1l}= outerRadius;
overrideVec (overrideInd)= 11;
overrideInd= overrideInd+1l;

end

if (exist('portLength', 'var'))

sweepParam{12}= portLength;
overrideVec (overrideInd)= 12;
overrideInd= overrideInd+1l;

end

if (exist('portRadius','var'))
sweepParam{13}= portRadius;
overrideVec (overrideInd)= 13;
overrideInd= overrideInd+1l;

end

if (exist('fiberAngle','var'))
sweepParam{1l4}= fiberAngle;
overrideVec (overrideInd)= 14;
overrideInd= overrideInd+1l;

end

if (exist ('waterModulus', 'var'))
sweepParam{15}= waterModulus;
overrideVec (overrideInd)= 15;
overrideInd= overrideInd+1;

end

if (exist('waterDensity', 'var'))
sweepParam{1l6}= waterDensity;
overrideVec (overrideInd)= 16;
overrideInd= overrideInd+1l;

end

if (exist('viscosity','var'))
sweepParam{17}= viscosity;
overrideVec (overrideInd)= 17;
overrideInd= overrideInd+1;

end

if (exist('capacitance','var'))
sweepParam{18}= capacitance;
overrideVec (overrideInd)= 19;
overrideInd= overrideInd+1l;

end

if (exist('inertance','var'))
sweepParam{19}= inertance;
overrideVec (overrideInd)= 20;
overrideInd= overrideInd+1l;

end

if (exist ('resistance','var'))
sweepParam{20}= resistance;
overrideVec (overrideInd)= 21;
overrideInd= overrideInd+1;

end

if (exist('orfRes', 'var'))
sweepParam{21}= resistance;
overrideVec (overrideInd)= 21;
overrideInd= overrideInd+1l;

end

if (exist ('numTubePairs', 'var'))
sweepParam{22}= numTubePairs;
overrideVec (overrideInd)= 22;
overrideInd= overrideInd+1l;

end

if (exist('operatingPressure','var'))
sweepParam{23}= operatingPressure;
overrideVec (overrideInd)= 23;
overrideInd= overrideInd+1;

end

case 'coupled tunable'
if (exist('x1l','var'))

115

sweepParam{l}= x1;
overrideVec (overrideInd)= 1;
overrideInd= overrideInd+1l;

end

if (exist('x2','var'))
sweepParam{2}= x2;
overrideVec (overrideInd)= 2;
overrideInd= overrideInd+1l;

end

if (exist('E11l','var'))
sweepParam{3}= E11;
overrideVec (overrideInd)= 3;
overrideInd= overrideInd+1l;

end

if (exist ('E22','var'))
sweepParam{4}= E22;
overrideVec (overrideInd)= 4;
overrideInd= overrideInd+1;

end

if (exist('vl2','var'))
sweepParam{5}= v12;
overrideVec (overrideInd)= 5;
overrideInd= overrideInd+1l;

end

if (exist ('v23','var'))
sweepParam{6}= v23;
overrideVec (overrideInd)= 6;
overrideInd= overrideInd+1;

end

if (exist ('Gl2','var'))
sweepParam{7}= G12;
overrideVec (overrideInd)= 7;
overrideInd= overrideInd+1l;

end

if (exist ('G23','var'))
sweepParam{8}= G23;
overrideVec (overrideInd)= 8;
overrideInd= overrideInd+1l;

end

if (exist('wallThickness', 'var'))
sweepParam{9}= wallThickness;
overrideVec (overrideInd)= 9;
overrideInd= overrideInd+1;

end

if (exist ('innerRadius', 'var'))
sweepParam{10}= innerRadius;
overrideVec (overrideInd)= 10;
overrideInd= overrideInd+1l;

end

if (exist ('outerRadius', 'var'))
sweepParam{1l1l}= outerRadius;
overrideVec (overrideInd)= 11;
overrideInd= overrideInd+1l;

end

if (exist('portLengthl', 'var'))
sweepParam{12}= portLength;
overrideVec (overrideInd)= 12;
overrideInd= overrideInd+1;

end

if (exist('portRadiusl','var'))
sweepParam{13}= portRadius;

116

overrideVec (overrideInd)= 13;
overrideInd= overrideInd+1;

end

if (exist('portLengthl','var'))
sweepParam{1l4}= portLength;
overrideVec (overrideInd)= 14;
overrideInd= overrideInd+1l;

end

if (exist ('portRadiusl','var'))
sweepParam{15}= portRadius;
overrideVec (overrideInd)= 15;
overrideInd= overrideInd+1;

end

if (exist('fiberAngle','var'))
sweepParam{1l6}= fiberAngle;
overrideVec (overrideInd)= 16;
overrideInd= overrideInd+1l;

end

if (exist ('waterModulus', 'var'))
sweepParam{17}= waterModulus;
overrideVec (overrideInd)= 17;
overrideInd= overrideInd+1l;

end

if (exist('waterDensity', 'var'))
sweepParam{18}= waterDensity;
overrideVec (overrideInd)= 18;
overrideInd= overrideInd+1l;

end

if (exist('viscosity','var'))
sweepParam{19}= viscosity;
overrideVec (overrideInd)= 19;
overrideInd= overrideInd+1;

end

if (exist('capacitance','var'))
sweepParam{20}= capacitance;
overrideVec (overrideInd)= 20;
overrideInd= overrideInd+1;

end

if (exist('inertancel', 'var'))
sweepParam{21}= inertance;
overrideVec (overrideInd)= 21;
overrideInd= overrideInd+1l;

end

if (exist ('resistancel','var'))
sweepParam{22}= resistance;
overrideVec (overrideInd)= 22;
overrideInd= overrideInd+1;

end

if (exist('orfResl', 'var'))
sweepParam{23}= resistance;
overrideVec (overrideInd)= 23;
overrideInd= overrideInd+1;

end

if (exist('inertance2',6 'var'))
sweepParam{24}= inertance;
overrideVec (overrideInd)= 24;
overrideInd= overrideInd+1l;

end

if (exist ('resistance2','var'))
sweepParam{25}= resistance;
overrideVec (overridelInd)= 25;

117

118

overrideInd= overrideInd+1l;

end

if (exist('orfRes2','var'))
sweepParam{26}= resistance;
overrideVec (overrideInd)= 26;
overrideInd= overrideInd+1l;

end

if (exist ('numTubePairs', 'var'))
sweepParam{27}= numTubePairs;
overrideVec (overrideInd)= 27;
overrideInd= overrideInd+1l;

end

if (exist('operatingPressure', 'var'))
sweepParam{28}= operatingPressure;
overrideVec (overrideInd)= 28;
overrideInd= overrideInd+1l;

end

end

%% Initialize system parameter struct.
% Pack up simulation parameters:
P= struct;

.Simulation.scaleTB= scaleTB;
.Simulation.config= config;
.Simulation.tubeType= tubeType;
.Simulation.inertEst= inertEst;
.Simulation.res= res;
.Simulation.modeShape= modeShape;
.Tube.bladderType= bladderType;
.SysType= sysType;
.Data.measurement= measurement;
.Data.avgWindow= avgWindow;
.Data.filename= filename;
.Data.gainAccel= gainAccel;
.Data.gainVibe= gainVibe;
.Data.gainLoad= gainLoad;
.Simulation.debug= massDebug;

Lo viR B v IR B v L v IR v L v IR IR v R o IR v B o Bl

o

Initialize beam parameters:
P= initializeTailboom (P) ;

% If F2MC tubes exist, initialize those:
P= initializeF2MC (P, sweepParam) ;

% Define frequency span [Rad/s]:

fmin= P.Frequency.fmin*2*pi;

fmax= P.Frequency.fmax*2*pi;

fres= P.Frequency.fres;
w= linspace (fmin, fmax,ceil ((fmax-fmin) *fres/ (2*pi)));
P.Frequency.w= w;

% Initialize system basis functions:
if (modeShape2)
x _temp= [0 8 16 24 32 49 68.5 88 107.5 142.5 150]*0.0254;

modeShapeVec= zeros (size(x_temp));
P _temp= P;

for i= l:length(x temp)

119

outLoc temp= x temp(i);
P temp.Simulation.outLoc= outLoc temp;

% Compute beam system matrices for temporary output location:
P temp= sysInit(P_temp);
[mag ph]= bode (P_temp.beamSys v, 2*pi*responseShapeFrequency) ;
modeShapeVec (1) = mag*sin (ph) ;
end
figl= figure;
P.Figure.figl= figl;
plot (x temp, -modeShapeVec)
% Compute slope difference between F2MC tube attachment points:
slopeVec= diff (modeShapeVec) ./diff (x temp);
rootSlope= slopeVec (l);
endSlope= interpl (x temp(l:end-1),slopeVec,P temp.Tube.length);
slopeDiff= endSlope-rootSlope;

fprintf ('Theoretical Slope Difference: %g\n\n',slopeDiff)

if (0)
fig2= figure;
magSlope= diff (magBeamPlot) ./diff (x_temp);
plot(x_temp(l:end—l),magSlope/(max(abs(magSlope))))
P.Figure.fig2= fig2;
end
end

P= sysInit(P);
P= computeBeamFRF (P, P.beamSys v,P.Frequency.w) ;

%% Iterate through parameter values to peform sweep.
% Initialize timing:
tStart= tic;

% Determine the length of each sweep vector:
if (overrideInd>1)
[~,nI]= size(sweepParam{overrideVec(l)});
end
if (overrideInd==3)
[~,nJ]= size (sweepParam{overrideVec(2)});
elseif (overrideInd>3)
fprintf ('Error: Cannot vary more than two parameters simultaneously.')

return

elseif (overrideInd==2)
ndJ= 1;

else
nI= 1; nd= 1;

end

% Sweep through each overriden parameter value:
if (overrideInd~=1)
for i= 1:nI
for j= 1:nJd
% Temporarily modify sweepParam to be inputted into main.m:
sweepParamsIn= sweepParam;
% Extract ith entry of the i-variable:
iVar= sweepParam{overrideVec (1) };
sweepParamsIn{overrideVec (1) }= iVar(:,1)"';

120

% Extract jth entry of the j-variable:
if (overrideInd>=3)
jVar= sweepParam{overrideVec (2) };
sweepParamsIn{overrideVec (2) }= jVar(:,]j)"';
end

% Feed overridden parameters into main.m:
P.VarlIndex= 1i; P.Var2Index= 7j;
trialNum= (j-1)*nI + i;

P.trialNum= trialNum;

P= updateF2MC (P, sweepParamsIn) ;

switch resOpt
case 1
P= resistanceOptimizer (P);
case 0
P= main (P, 0);
otherwise
error ('Select resOpt'")
end
% Print sweep status to command window:
statusUpdate (i, j,nI,nd,tStart)
end
end
else

oo

Feed parameters into main.m:

P.trialNum= 1;
% Simulate system:
tic
switch resOpt
case 1
P= resistanceOptimizer (P);
case 0
if (strcmp(sysType, 'Fluidlastic'))
P= main (P);
else
P= convertUnits (P);
end
otherwise
error ('Select resOpt'")
end
toc

)

% Plot the resulting frequency response:
plotFRF (P, 3)

switch scaleTB
case '"full'
case 'small'
if ((P.TFmode<4 || P.TFmode>8))
% Plot experimental data for comparison:
experimentalDataProcessor (P)
end
case 'OH-58'
testDatab8 (P)
end
end

end

%% List of subfunctions

o\

oo

Determine timestamp string
function time string= secZhms (t)

oo

o\

INPUT 1: t - Time [s].
OUTPUT 1: time string - String with properly formatted time.

oo

)

% Determine the number of hours, minutes, and seconds:
numHours = floor (t/3600);

numMins floor ((t-3600*numHours) /60) ;

numSecs = round (t-3600*numHours-60*numMins) ;

% Format hours:
if (numHours<10)
hourString = ['0' num2str (numHours)];
else
hourString = num2str (numHours) ;
end

% Format minutes:
if (numMins<10)
minString = ['0' num2str (numMins)];
else
minString = num2str (numMins) ;
end

% Format seconds:
if (numSecs<10)

secString= ['0' num2str (numSecs)];
else
secString= num2str (numSecs) ;
end
time string = [hourString ':' minString ':' secString];
end

% Display iteration status update
function statusUpdate(i,j,nI,nd,tStart)

o

% INPUT 1: 1 - First indexing variable.

% INPUT 2: J - Second indexing variable.

% INPUT 3: nI - Number of iterations for the first index variable.
% INPUT 4: nJ - Number of iterations for the second index variable.
% INPUT 5: tStart - Time at which simulation was started.

% Compute the total elapsed time so far:
tElapsTotal= toc(tStart);

% Total number of iterations completed:
nTotal= nJ* (i-1)+j;

% Average time spent per iteration:
avgTime= tElapsTotal/nTotal;

% Number of iterations remaining:
nRem= nI*nJ-nTotal;

Convert timestamp from seconds to hours-minutes-seconds format.

Print a status update with estimated simulation time remaining.

121

122

o

% Estimated time remaining based on average iteration time:
estRem= avgTime*nRem;

% Reformat time into hms format:

tElapsTotal= sec2hms (tElapsTotal);

estRem= sec2hms (estRem) ;

)

% Print simulation status:

textl= ['Time Elapsed: ' tElapsTotall;

text2= [' Estimated Time Remaining: ' estRem];
text3= [' i= ' num2str(i) ' j= ' num2str(j) '\n\n'];
fprintf ([textl text2 text3])

end

% Extract Beam data

function P= initializeTailboom (P)

% Initialize tailboom properties and store them into struct P.
INPUT 1: Struct P.

OUTPUT 1: Struct P with all fields populated.

oo

o

S o
°

% Unpack variables:
scaleTB= P.Simulation.scaleTB;
% Determine which spreadsheets to read:
switch scaleTB
case '"full'

spreadName= 'FS';
case 'OH-58"
spreadName= 'OH';
case 'small'
spreadName= 'SS';
otherwise
error ('Please select tailboom scale.\n'")
end
fileName= 'System.xlsx';

% Extract simulation parameters. Remove NaNs:
sysProps= xlsread(fileName, ['SIM-' spreadName], 'D2:D102");
sysProps (isnan (sysProps))= [];
% Extract tailboom parameters. Remove NaNs:
tailProps= xlsread(fileName, ['TB-' spreadName], 'D2:D102");
tailProps (isnan(tailProps))= [1];
% Extract stringer parameters. Remove NaNs:
switch P.Simulation.scaleTB
case 'full'
stringProps= xlsread(fileName, ['TB-' spreadName], 'D22:DD24");
stringProps (any (isnan(stringProps),2),:)= [];
case 'OH-58'
stringProps= xlsread(fileName, ['TB-' spreadName], 'D22:DD24");
stringProps (any (isnan (stringProps),2),:)= [1;
case 'small'
stringProps= xlsread(fileName, ['TB-' spreadName], 'D28:D30"');
stringProps (any (isnan (stringProps),2),:)= [1;
otherwise
error('Select a tailboom scale.')
end

o\

oo

Output units:
spl= sysProps(l);

switch spl
case 1
P.Simulation.units= 'SI';
case 2
P.Simulation.units= 'English';
end

oo

Simulation output axial position [m]:
.Simulation.outLoc= sysProps(2);

las)

o\

Dimension of basis function space:
.Simulation.nDimensions= sysProps(3);

v}

oo

Numerical differentiation step size:
.Simulation.stepSize= sysProps (4);

o

o

Transfer function to compute.
.TFmode= sysProps (5) ;

e}

oo

o

Minimum frequency [Hz]:
.Frequency.fmin= sysProps(6);

e}

oo

Maximum frequency [Hz]:
.Frequency. fmax= sysProps(7);

o

o

Frequency resolution [1/Hz]:
.Frequency.fres= sysProps(8);

e}

oo

Output frequency:
.Frequency.outFreg= [num2str (sysProps(9)) '/rev'];

o]

o\

o

Tailboom length [m]:
.Beam.length= tailProps(1l);

o

o\

Tailboom damping coefficient:
.Beam.dampingRatio= tailProps(2);

o]

o

Thickness of tailboom skin [m]:
.Beam.skinThickness= tailProps(3);

o

switch scaleTB
case 'full'

o\

o

Ratio of tailboom tip radius to base radius:
.Beam.taper= tailProps (4);

o

o\

Radius of tailboom at base [m]:
.Beam.baseRadius= tailProps(5);

v}

oe

o\

Vertical load on tailboom:
.Beam.verticalload= tailProps(6);

v}

oe

Axial position of vertical load [m]:
.Beam.verticallLoadPos= tailProps(7);

as}

Simulation parameters ———-——---- - - - oo

Frequency response parameters —-——

Tailboom properties ————————————————————— -

Tailboom geometry ———-———————————————— - -

Vertical loading properties ---------——-——--—————————————————————

123

o° oo

las)

o\

v}

oo

las)

oo

las)

o\

v}

oo

o

o

e

00 o°

e

oo

o

o

e

oo

jae

case

o° oo

e

o\

jae

o oo

jae

o

e

o° oo

e

o\

e

oe

e

o\

oo

MaSSES ==—===— = e

Tail rotor mass [kg]:

.Beam.massRotor= tailProps(8);

Tail rotor axial position [m]:

.Beam.rotorPosition= tailProps(9);

Horizontal stabilizer mass [kg]:

.Beam.horizStabMass= tailProps (10);

Horizontal stabilizer position [m]:

.Beam.horizStabPosition= tailProps(1l1l);

Concentrated mass [kg]:

.Beam.mass= tailProps(1l2);

Concentrated mass position [m]:

.Beam.massPosition= tailProps(13);

Driveshaft mass [kg/m]:

.Beam.driveShaftMass= tailProps(14);

Tailboom stringer properties ——-—-—-—-———————————————————————————
Radial position of each stringer center
.Stringer.radialPosition= stringProps(l,2:end);

Number of stringers:

.Stringer.number= length(P.Stringer.radialPosition);

Cross-sectional area of each stringer

.Stringer.area= stringProps(2,2:end);

"Radius" of each stringer [m]:

.Stringer.radius= stringProps(3,2:end);

OH-58"

Tailboom geometry ——————————————-——-—-—— -
Ratio of tailboom tip radius to base radius:
.Beam.taper= tailProps (4);

Radius of tailboom at base [m]:

.Beam.baseRadius= tailProps(5);

Vertical loading properties --—-----——-——--—--—————————————————————

Vertical load on tailboom:

.Beam.verticalload= tailProps(6);

Axial position of vertical load [m]:

.Beam.verticallLoadPos= tailProps(7);

MaSSES ——————

Tail rotor mass [kg]:

.Beam.massRotor= tailProps(8);

Tail rotor axial position [m]:

.Beam.rotorPosition= tailProps(9);

Horizontal stabilizer mass [kg]:

.Beam.horizStabMass= tailProps (10);

Horizontal stabilizer position [m]:

.Beam.horizStabPosition= tailProps(1l1l);

124

oo

las)

o\

v}

oo

las)

o oP

av}

oo

las)

o

e}

oo

o

case

o oo

o

o

e

oo

jae

o

jae

o

o

e

o\

jae

o oo

jae

o

e

o\

e

oe

e

o\

e

o\

Concentrated mass [kg]:

.Beam.mass= tailProps(12);

Concentrated mass position [m]:

.Beam.massPosition= tailProps(13);

Driveshaft mass [kg/m]:

.Beam.driveShaftMass= tailProps(14);

Tailboom stringer properties -—-——---—---————————————————————————
Radial position of each stringer center [rad]:

.Stringer.radialPosition= stringProps(l,2:end);

Number of stringers:

.Stringer.number= length(P.Stringer.radialPosition);

Cross-sectional area of each stringer [m]:

.Stringer.area= stringProps(2,2:end);

"Radius" of each stringer [m]:

.Stringer.radius= stringProps(3,2:end);

small'
Tailboom geometry ———-———-—-—-———-———-—————————— - ————————
Beam taper ratio (width):

.Beam.taperWidth= tailProps(4);

Beam taper ratio (height):

.Beam.taperHeight= tailProps(5);

Beam base width [m]:

.Beam.baseWidth= tailProps(6);

Beam base height [m]:

.Beam.baseHeight= tailProps(7);

Vertical loading properties --—-----—-——-—-—--—————————————————————

Vertical load on tailboom:

.Beam.verticalload= tailProps(8);

Axial position of vertical load [m]:

.Beam.verticalloadPos= tailProps(9);

Masses ————==—---m oo oo
Vertical stabilizer point mass [kg]:

.Beam.vertStabMass= tailProps (10);

Vertical stabilizer tube length [m]:

.Beam.vertStabLength= tailProps(1l1l);

Vertical stabilizer tube mass [kg]:

.Beam.vertStabTubeMass= tailProps(12);

Horizontal stabilizer mass [kg]:

.Beam.horizStabMass= tailProps(12);

Horizontal stabilizer side mass [kg]:

.Beam.horizStabMass= tailProps (13);

Horizontal stabilizer side mass [kg]:

125

126

las)

.Beam.horizStabTubeMass= tailProps (14);

o\

Stack mass [kg]:
.Beam.stackMass= tailProps(15);

v}

oo

Stack mass position [m]:
.Beam.stackMassLoc= tailProps(16);

las)

o\

Rear plate mass [kg]:
.Beam.tailPlateMass= tailProps(17);

las)

o\

Tuning springs ——-————————————— - - %
Linear spring constant [N/m]:
.Beam.k= tailProps(18);

oo

las)

o\

Torsional spring constant [N/rad]:
.Beam.Kt= tailProps(19);

ae}

oo

Tailboom stringer properties ——-—-—--—-——————————————————————————— %
.Stringer.thickness= stringProps(1l);

.Stringer.cornerWidth= stringProps(2);

.Stringer.sideWidth= stringProps(3);

U o g

end

% Axial positions over which simulation takes place:
P.Beam.x= .
linspace (0, P.Beam.length, (1/P.Simulation.stepSize) *P.Beam.length+1) ;

% Extract F2MC data

function P= initializeF2MC (P, sweepParam)

Initialize F2MC tube properties and store them into struct P.

INPUT 1: Struct P.

INPUT 2: Cell array containing parameters through which to sweep.
OUTPUT 1: Struct P with all fields populated.

o0 o o°

o

o o)
°

)

% Unpack variables:
config= P.Simulation.config;
scaleTB= P.Simulation.scaleTB;
tubeType= P.Simulation.tubeType;
% Determine which spreadsheet to read.
switch config
case 'coupled'
configName= 'C';
case 'uncoupled'
configName= 'UC';
case 'coupled tunable'
configName= 'CT';
otherwise
error ('Please select F2MC configuration.\n')
end

switch scaleTB
case 'full'
spreadName= 'FS';
case 'OH-58"
spreadName= 'OH';
case 'small'
spreadName= 'SS';

otherwise

error ('Please select tailboom scale.\n'")

end

fileName=

% Extract F2MC tube data from spreadsheet.
tubeProps= xlsread(fileName, [tubeType '-' spreadName

'System.xlsx';

if (size(tubeProps,2)>1)
tubeProps(:,2:3)= [];
tubeProps (any (isnan (tubeProps),2),:)= [];
switch configName
case {'C','UC'}

% F2MC tube positions ------—----———-——————————————————————————

o°

if (sweepParam{1l}<0)

P.Tube.x1= tubeProps(l,2:end);
else

P.Tube.x1l= sweepParam{l};
end

% Tail-end positions of tubes [m]:
if (sweepParam{2}<0)

P.Tube.x2= tubeProps(2,2:end);
else

P.Tube.x2= sweepParam{2};
end

% Material properties ---—-------—--—--—-——-————————————————————

if (sweepParam{3}<0)

P.Tube.E1l1l= tubeProps(3,2:end);
else

P.Tube.Ell= sweepParam{3};
end

if (sweepParam{4}<0)

P.Tube.E22= tubeProps (4,2:end);
else

P.Tube.E22= sweepParam{4};
end

if (sweepParam{5}<0)

P.Tube.v12= tubeProps (5,2:end);
else

P.Tube.v12= sweepParam{5};
end

if (sweepParam{6}<0)

P.Tube.v23= tubeProps (6,2:end);
else

P.Tube.v23= sweepParam{6};
end

if (sweepParam{7}<0)

P.Tube.Gl2= tubeProps(7,2:end);
else

P.Tube.Gl2= sweepParam{7};
end

Fuselage-end positions of tubes [m]:

Remove NaNs.

configName]) ;

127

if (sweepParam{8}<0)
P.Tube.G23= tubeProps(8,2:end);

else
P.Tube.G23= sweepParam{8};
end
% Tube geometry ---------—-——--—-——-——————————————~————————————— %

o°

Tube thickness [m]:
f (sweepParam{9}<0)
P.Tube.thickness= tubeProps(9,2:end);

-

else
P.Tube.thickness= sweepParam{9};
end

% Tube inner radius [m]:
if (sweepParam{10}<0)
P.Tube.innerRadius= tubeProps (10,2:end);
else
P.Tube.innerRadius= sweepParam{10};
end

% Tube outer radius [m]:
if (sweepParam{11}<0)
P.Tube.outerRadius= tubeProps(ll,2:end);
else
P.Tube.outerRadius= sweepParam{ll};
end

)

Inertia track length [m]:
if (sweepParam{12}<0)
P.Tube.portLength= tubeProps(12,2:end);
else
P.Tube.portLength= sweepParam{1l2};
end

% Inertia track radius [m]:
if (sweepParam{13}<0)
P.Tube.portRadius= tubeProps(13,2:end);
else
P.Tube.portRadius= sweepParam{1l3};
end

% Tube fiber winding angle [deg]:
if (sweepParam{14}<0)
P.Tube.fiberAngle= tubeProps(l4,2:end);

else
P.Tube.fiberAngle= sweepParam{l4};
end
% Working fluid properties ---——--------------- %

oe

Water bulk modulus [Pa]:
if (sweepParam{15}<0)
P.Tube.fluidModulus= tubeProps(15,2:end);
else
P.Tube.fluidModulus= sweepParam{1l5};
end

% Water density [kg*m”-3]:
if (sweepParam{16}<0)

128

case

P.Tube.fluidDensity= tubeProps(16,2:end);
else

P.Tube.fluidDensity= sweepParam{1l6};
end

% Water viscosity [Pa*s]:
if (sweepParam{17}<0)
P.Tube.viscosity= tubeProps(l7,2:end);
else
P.Tube.fiberAngle= sweepParam{l7};
end

% Fluid capacitance [m"4-s"2/kg]:
if (sweepParam{18}<0)
P.Tube.capacitance= tubeProps(18,2:end);
else
P.Tube.capacitance= sweepParam{18};
end

% Fluid inertance [kg/m"4]:

if (sweepParam{19}<0 && sweepParam{1l2}<0 && sweepParam{1l1}<0)

P.Tube.inertance= tubeProps(19,2:end);
else
area= pi*P.Tube.portRadius”?2;

P.Tube.inertance= P.Tube.fluidDensity*sweepParam{12}/area;

end

o0

Fluid resistance [kg/s-m"3]:
.Tube.resistance= tubeProps (20,2:end);

e}

oo

Orifice resistance [kg/s-m"3]:
if (sweepParam{21}<0)

P.Tube.orificeResistance= tubeProps(21,2:end);

else
P.Tube.orificeResistance= sweepParam{21};
end

% Number of tubes per side:
if (sweepParam{22}<0)
P.Tube.numTubePairs= tubeProps (22,2:end);
else
P.Tube.numTubePairs= sweepParam{22};
end

% Operating pressure:

if (sweepParam{23}<0 && strcmp (tubeType, 'McKibben'))
P.Tube.operatingPressure= tubeProps(23,2:end);

elseif (strcmp (tubeType, "'McKibben'))
P.Tube.operatingPressure= sweepParam{23};
end
ICTI

)

% Fuselage-end positions of tubes [m]:
if (sweepParam{1l}<0)

P.Tube.x1l= tubeProps(l,2:end);
else

P.Tube.x1l= sweepParam{l};
end

% Tail-end positions of tubes [m]:

% F2MC tube positions —-————=—=-=——"—""—"—""—"—"—"—"—"—"—"—"—"—"—"—~—~—~—~—~——————

129

if (sweepParam{2}<0)

P.Tube.x2= tubeProps(2,2:end);
else

P.Tube.x2= sweepParam{2};
end

% Material properties —-------—-——-————-——-——————————————————— %

if (sweepParam{3}<0)

P.Tube.Ell= tubeProps(3,2:end);
else

P.Tube.Ell= sweepParam{3};
end

if (sweepParam{4}<0)

P.Tube.E22= tubeProps (4,2:end);
else

P.Tube.E22= sweepParam{4};
end

if (sweepParam{5}<0)

P.Tube.v12= tubeProps(5,2:end);
else

P.Tube.v12= sweepParam{5};
end

if (sweepParam{6}<0)

P.Tube.v23= tubeProps(6,2:end);
else

P.Tube.v23= sweepParam{6};
end

if (sweepParam{7}<0)

P.Tube.Gl2= tubeProps(7,2:end);
else

P.Tube.Gl2= sweepParam{7};
end

if (sweepParam{8}<0)
P.Tube.G23= tubeProps(8,2:end);

else
P.Tube.G23= sweepParam{8};
end
% Tube geometry --—-------—-----—-——-—-"—"—-—"—~—"——~—"—~——~——(————————————— %

% Tube thickness [m]:
if (sweepParam{9}<0)
P.Tube.thickness= tubeProps(9,2:end);
else
P.Tube.thickness= sweepParam{9};
end

% Tube inner radius [m]:
if (sweepParam{10}<0)
P.Tube.innerRadius= tubeProps (10,2:end);
else
P.Tube.innerRadius= sweepParam{10};
end

% Tube outer radius [m]:

130

if (sweepParam{1l1}<0)

P.Tube.outerRadius= tubeProps(ll,2:end);
else

P.Tube.outerRadius= sweepParam{ll};
end

% Inertia track 1 length [m]:
if (sweepParam{12}<0)
P.Tube.portLengthl= tubeProps(12,2:end);
else
P.Tube.portlLengthl= sweepParam{1l2};
end

% Inertia track 1 radius [m]:
if (sweepParam{13}<0)
P.Tube.portRadiusl= tubeProps(13,2:end);
else
P.Tube.portRadiusl= sweepParam{13};
end

% Inertia track 2 length [m]:
if (sweepParam{14}<0)
P.Tube.portLength2= tubeProps(14,2:end);
else
P.Tube.portlLength2= sweepParam{l4};
end

% Inertia track 2 radius [m]:
if (sweepParam{15}<0)
P.Tube.portRadius2= tubeProps(15,2:end);
else
P.Tube.portRadius2= sweepParam{15};
end

% Tube fiber winding angle [deg]:
if (sweepParam{16}<0)
P.Tube.fiberAngle= tubeProps(16,2:end);
else
P.Tube.fiberAngle= sweepParam{1l6};
end

o

o

Water bulk modulus [Pal]:
if (sweepParam{17}<0)

P.Tube.fluidModulus= tubeProps(l7,2:end);

else
P.Tube.fluidModulus= sweepParam{l7};
end

% Water density [kg*m”-3]:
if (sweepParam{18}<0)

P.Tube.fluidDensity= tubeProps(18,2:end);

else
P.Tube.fluidDensity= sweepParam{18};
end

% Water viscosity [Pa*s]:
if (sweepParam{19}<0)

P.Tube.viscosity= tubeProps(19,2:end);
else

Working fluid properties ——--—--——-———————————————————————————

131

end

P.Tube.fiberAngle= sweepParam{19};
end

% Fluid capacitance [m"4-s"2/kg]:
if (sweepParam{20}<0)
P.Tube.capacitance= tubeProps (20,2:end);
else
P.Tube.capacitance= sweepParam{20};
end

% Fluid inertance 1 [kg/m™4]:
if (sweepParam{21}<0 && sweepParam{1l2}<0 && sweepParam{1l1l}<0)
P.Tube.inertancel= tubeProps(21,2:end);
else
area= pi*P.Tube.portRadius”2;
P.Tube.inertancel= P.Tube.fluidDensity*sweepParam{12}/area;
end

o\

Fluid resistance 1 [kg/s-m"3]:
.Tube.resistancel= tubeProps(22,2:end);

o

Orifice resistance 1 [kg/s-m"3]:

if (sweepParam{23}<0)

P.Tube.orificeResistancel= tubeProps (23,2:end);
else

P.Tube.orificeResistancel= sweepParam{23};
end

% Fluid inertance 2 [kg/m™4]:
if (sweepParam{24}<0 && sweepParam{14}<0 && sweepParam{11}<0)
P.Tube.inertance2= tubeProps(24,2:end);
else
area= pi*P.Tube.portRadius”2;
P.Tube.inertance2= P.Tube.fluidDensity*sweepParam{14}/area;
end

oo

Fluid resistance 2 [kg/s-m"3]:
P.Tube.resistance2= tubeProps (25,2:end);

% Orifice resistance 2 [kg/s-m"3]:
if (sweepParam{26}<0)
P.Tube.orificeResistance2= tubeProps(26,2:end);
else
P.Tube.orificeResistance2= sweepParam{26};
end

% Number of tubes per side:
if (sweepParam{27}<0)
P.Tube.numTubePairs= tubeProps (27,2:end);
else
P.Tube.numTubePairs= sweepParam{27};
end

% Operating pressure:

if (sweepParam{28}<0 && strcmp (tubeType, 'McKibben'))
P.Tube.operatingPressure= tubeProps (28,2:end) ;

elseif (strcmp (tubeType, 'McKibben'))
P.Tube.operatingPressure= sweepParam{28};

end

132

o\

Initialize result storage vector:

P.Results.irVec= [];
P.Results.x2Vec= [];
P.Results.sysMassVec= [];
P.Results.firstModeDampingVec= [];
P.Results.secondModeDampingVec= [];
end
end

% Update F2MC data as needed
function P= updateF2MC (P, sweepParam)

% Update F2MC tube properties and store them into struct P as needed.

oo

INPUT 1: P - Empty struct P.
OUTPUT 1: P - Struct containing tailboom parameters.

o\

o\

o

Fuselage-end positions of tubes [m]:
if (sweepParam{l}>=0)

P.Tube.x1l= sweepParam{l};
end

% Tail-end positions of tubes [m]:
if (sweepParam{2}>=0)

P.Tube.x2= sweepParam{2};
end

)

if (sweepParam{3}>=0)
P.Tube.Ell= sweepParam{3};
end

if (sweepParam{4}>=0)
P.Tube.E22= sweepParam{4};
end

if (sweepParam{5}>=0)
P.Tube.v12= sweepParam{5};
end

if (sweepParam{6}>=0)
P.Tube.v23= sweepParam{6};
end

if (sweepParam{7}>=0)
P.Tube.Gl2= sweepParam{7};
end

if (sweepParam{8}>=0)
P.Tube.G23= sweepParam{8};
end

% Tube geometry ———————————————————— - ————

o\

Tube thickness [m]:

if (sweepParam{9}>=0)
P.Tube.thickness= sweepParam{9};

end

% Tube inner radius [m]:

F2MC tube positions ——-—=—-—-—----—-—————-—— -

% Material properties ---------------—-——-—-————————————————————————

°

o)
°

133

if (sweepParam{10}>=0)
P.Tube.innerRadius= sweepParam{10};
end

% Tube outer radius [m]:

if (sweepParam{1l1l}>=0)
P.Tube.outerRadius= sweepParam{ll};

end

switch config
case {'coupled', 'uncoupled'}

% Port length [m]:

if (sweepParam{1l2}>=0)
P.Tube.portLength= sweepParam{12};

end

% Port radius [m]:

if (sweepParam{13}>=0)
P.Tube.portRadius= sweepParam{1l3};

end

% Tube fiber winding angle [deg]:

if (sweepParam{14}>=0)
P.Tube.fiberAngle= sweepParam{l4};

end

% Working fluid properties ———-—--——————-———————————————————————————

% Water bulk modulus [Pa]:

if (sweepParam{15}>=0)
P.Tube.fluidModulus= sweepParam{1l5};

end

% Water density [kg*m"-3]:

if (sweepParam{16}>=0)
P.Tube.fluidDensity= sweepParam{1l6};

end

% Water viscosity [Pa*s]:

if (sweepParam{1l7}>=0)
P.Tube.fiberAngle= sweepParam{l7};

end

% Fluid capacitance [m"4-s"2/kg]:

if (sweepParam{18}>=0)
P.Tube.capacitance= sweepParam{18};

end

% Fluid inertance [kg/m"4]:

if (sweepParam{l1l2}>=0 || sweepParam{13}>=0)

area= pi*P.Tube.portRadius”2;

P.Tube.inertance= P.Tube.fluidDensity*sweepParam{12}/area;

end

% Orifice resistance [kg/s-m"3]:
if (sweepParam{21}>=0)

P.Tube.orificeResistance= sweepParam{21};

end

% # of tubes per setup:
if (sweepParam{22}>=0)

134

case

P.Tube.numTubePairs= sweepParam{22};
end
'coupled tunable'
% Port length 1 [m]:
if (sweepParam{1l2}>=0)
P.Tube.portlLengthl= sweepParam{1l2};
end

% Port radius 1 [m]:

f (sweepParam{13}>=0)
P.Tube.portRadiusl= sweepParam{1l3};

end

-

% Port length 2 [m]:

if (sweepParam{14}>=0)
P.Tube.portLengthl= sweepParam{1l4};

end

% Port radius 2 [m]:

if (sweepParam{15}>=0)
P.Tube.portRadiusl= sweepParam{1l5};

end

% Tube fiber winding angle [deg]:

if (sweepParam{1l6}>=0)
P.Tube.fiberAngle= sweepParam{1l6};

end

% Working fluid properties ——-—--——-——-—————————————————————————————

% Water bulk modulus [Pa]:

if (sweepParam{17}>=0)
P.Tube.fluidModulus= sweepParam{l7};

end

% Water density [kg*m”-3]:

if (sweepParam{18}>=0)
P.Tube.fluidDensity= sweepParam{18};

end

% Fluid wviscosity [Pa*s]:

if (sweepParam{19}>=0)
P.Tube.fiberAngle= sweepParam{1l9};

end

% Fluid capacitance [m"4-s"2/kg]:

if (sweepParam{20}>=0)
P.Tube.capacitance= sweepParam{20};

end

% Fluid inertance 1[kg/m™4]:
if (sweepParam{1l2}>=0 || sweepParam{13}>=0)

area= pi*P.Tube.portRadiusl”2;

P.Tube.inertancel= P.Tube.fluidDensity*sweepParam{1l2}/area;
end

% Fluid resistance 1[kg/m™4]:
if (sweepParam{1l2}>=0 || sweepParam{13}>=0)

P.Tube.resistancel= 8*P.Tube.fluidViscosity*sweepParam{12}...

/ (pi*P.Tube.portRadiusl™4) ;
end

135

% Orifice resistance 1[kg/s-m"3]:

if (sweepParam{23}>=0)
P.Tube.orificeResistancel= sweepParam{23};

end

% Fluid inertance 2[kg/m"4]:
if (sweepParam{1l4}>=0 || sweepParam{15}>=0)

area= pi*P.Tube.portRadius2”2;

P.Tube.inertancel= P.Tube.fluidDensity*sweepParam{1l4}/area;
end

% Fluid resistance 2[kg/m”™4]:
if (sweepParam{1l4}>=0 || sweepParam{15}>=0)

P.Tube.resistancel= 8*P.Tube.fluidViscosity*sweepParam{1l4}...

/ (pi*P.Tube.portRadius2”4) ;
end

% Orifice resistance 2[kg/s-m"3]:

if (sweepParam{26}>=0)
P.Tube.orificeResistance2= sweepParam{26};

end

% # of tubes per setup:
if (sweepParam{27}>=0)
P.Tube.numTubePairs= sweepParam{27};

[

% Compute basis functions, tailboom system, and tailboom FRF
function P= sysInit (P)

oo

o

response.
INPUT 1: P - Empty struct P.
OUTPUT 1: P - Struct containing tailboom parameters.

o

o\

)

Y

)

% Unpack variables:

scaleTB= P.Simulation.scaleTB;
outerRadius= P.Tube.outerRadius;
skinThickness= P.Beam.skinThickness;
x= P.Beam.x;

o0 o o°

o\

in struct P to avoid making redundant calculations.

o\

Compute eigenvalues for hinge-springed boundary condition:
if (strcmp('small',scaleTB) || strcmp('OH-58',scaleTB))

% Compute eigenvalues:
a= linspace(0,10,1000);

kn= zeros(size(a)):;

for j= 1l:length(a)
kn(j)= fzero(@(a) charEgn(a,P),a(j));
end
kn= unique (kn) ;
kn= sort (kn);

Compute basis functions, tailboom model, and compute tailboom frequency

Compute basis function values ---—-----—-—-——-————————————————————————————
This block of code computes basis functions that are used throughout the
tailboom simulation code package. The resulting vectors are then stored

136

% Set tolerance for numerical differences:
kn= round (1e9*kn) *1e-9;

kn= unique (kn) ;

kn (kn<0)= [];

% Store eigenvalues in struct P:
P.Simulation.kn= kn;
end

% Compute tube effective length [m]:
switch scaleTB
case 'full'
P.Tube.length= P.Tube.x2-P.Tube.x1l;
case 'OH-58"
P.Tube.length= P.Tube.x2-P.Tube.x1 - 5*.0254;
case 'small'
if ((P.Tube.x2 - P.Tube.x1)==10.25*0.0254)
P.Tube.length= 4.5*.0254;
elseif ((P.Tube.x2 - P.Tube.xl)==22*0.0254)
P.Tube.length= (22-7)*0.0254;
elseif ((P.Tube.x2 - P.Tube.x1)==13*0.0254)
P.Tube.length= 6*0.0254;
else
error ('Tube length must be defined.\n\n')
end
end

Compute initial tube volume [m"3]:
.Tube.initialVolume= pi* (P.Tube.innerRadius.”2) .*P.Tube.length;

g oe

% Count the number of F2MC tubes:
nTubes= length (P.Tube.capacitance);
P.Tube.nTubes= nTubes;
% Unpack variables and initialize:
outLoc= P.Simulation.outLoc;
N= P.Simulation.nDimensions;
psi L prime= zeros(P.Simulation.nDimensions,1);
[psi L,psi Out]= deal(zeros(P.Simulation.nDimensions,1));
[d21,d21Psi2lp]= deal (zeros (N,nTubes)) ;
d= cell (nTubes, 1) ;
[psi 0 doublePrime,psi 0 triplePrime]=
deal (zeros (P.Simulation.nDimensions, 1)) ;
% Compute F2MC tube strain:
for k= 1:nTubes
% Determine x-span of each F2MC tube:
xUP= x (x>=P.Tube.x1(k));
xTube= xUP (xUP<=P.Tube.x2 (k));
P.Tube.xTube= xTube;

switch scaleTB
case 'full'
effRadius= outerRadius (k) +skinThickness;
d{k,1}= beamRadius (P, xTube)-effRadius;
case 'OH-58"
d{k,1}= beamRadius (P, xTube) ;
case 'small'
d{k,1}= beamHeight (P, xTube) /2+1*.0254;
end
P.Tube.offset= d;

137

138

end

o\

Iterate through each dimension and tube to populate basis function
vectors:

for j=1:P.Simulation.nDimensions

psi L(j)= Psi(P.Beam.length,j,P);

psi Out(j)= Psi (outLoc,j,P);

psi L prime(j)= dlPsi(P.Beam.length,j,P);

oo

psi 0 doublePrime(j)= d2Psi(0,3,P);
psi O triplePrime(j)= d3Psi(0,3],P);
for k= 1:nTubes
d21(j, k)= integ(j,k,'T',P);
dz2= d{k,1};
dl= d2(1);
d2= d2 (end) ;
d21Psi2lp(j, k)= d2*d1Psi (xTube (end),j,P)-dl*dlPsi (xTube(1l),3,P);
end
end

oo

Basis function values at L (N x 1):
.Basis.psi L= psi L;
.Basis.psi L prime= psi L prime;

o

oo

Basis function values at desired output location (N x 1):
.Basis.psi Out= psi Out;

o

o

Basis function values at 0 (N x 1):
.Basis.psi 0 doublePrime= psi 0 doublePrime;
.Basis.psi 0 triplePrime= psi 0 triplePrime;

U o

o

eps 21= {d21}'*{g} (N x 1):
.Basis.d21= d21/P.Tube.length;
.Basis.d21Psi2lp= d21Psi2lp;

U o

o\

EI(0), EI'(0):
.EI 0= E(P,0)*Izz(P,0);

o]

o)

Compute tailboom system and frequency response —-—-—-————————————————————— %
The system analyzed consists of two subsystems: the tailboom and the F2MC
tubes. This segment of code computes the tailboom (beam) state space
model, and uses it to compute its frequency response.
[M v,K v,C v,F v,P]= computeBeamMatrices (P);
P.Beam.M v= M v; P.Beam.K v=K v; P.Beam.C v= C v; P.Beam.F v= F v;
[P.Abeam v,P.Bbeam v,P.Cbeam v,P.Dbeam v]=

beam2StateSpace (P) ;
P.beamSys v= ss(P.Abeam v,P.Bbeam v,P.Cbeam v,P.Dbeam Vv);
end

o0 o o°

o\

)

% Compute beam mode shapes
function calcBeamModeShape (M, Phi, s, figNum, modeNum, P, plotType)
% Compute and plot the beam's mode shapes over position vector s.

% INPUT : Mass matrix M.
% INPUT Mass-normalized modal matrix Phi.
% INPUT Position vector s.

o\

1
2
3
INPUT 4: Figure number.
INPUT 5: Mode number of interest.
7
8
1

oe

o\

INPUT Struct containing all passing parameters.
INPUT Plot type. Displacement if 'disp', slope if 'slope'.
OUTPUT N/A

oe

o\

139

% Compute basis functions:
[N, ~]= size(M);
psi= zeros (N, length(s));

switch plotType
case 'disp'

for j= 1:N
psi(j,:)= Psi(s,3,P);
end
case 'slope'
for j= 1:N
psi(j,:)= dlPsi(s,]j,P);
end

end
% Construct mode shape:
Phi= Phi (:, modeNum) ;

y= Phi'*psi;

% Normalize response:
if (modeNum==1)

y= y/max (abs (y));
end
% Approximate slope in rads/N:
figure (figNum)
plot(s,y)
xlabel ('x [m]")
ylabel ('w [m/N]")
end

% Plot frequency response

function plotFRF (P, figNum)

Subfunction for plotting beam and fluidlastic tailboom FRFs.

INPUT 1: P - Data structure containing parameter values. Populated by
main() on the initial run, and then fed back into main() to avoid
re-reading parameters from System Data.xlsx.

o 00 o o o

o

OUTPUT 1: N/A

o
o

)

% Unpack variables:

TFmode= P.TFmode;

scaleTB= P.Simulation.scaleTB;
w= P.Frequency.w;

figure (£igNum)

if (TFmode<4 || TFmode>8)
magBeam= P.Frequency.magBeam;
semilogx (w/ (2*pi),20*10ogl0 (magBeam), 'b-"', "linewidth', 2)
hold on

end

if (isfield(P.Frequency, 'magBeamTube'))
magBeamTube= P.Frequency.magBeamTube;

end

% Plot F2MC-beam frequency response:

switch P.SysType

case 'Fluidlastic'
switch TFmode
case {4,5,0,7,8,10}
loglog (w/ (2*pi) ,magBeamTube, 'r--", 'linewidth', 2)
otherwise
semilogx (w/ (2*pi),20*1ogl0 (magBeamTube), 'r:', 'linewidth',2)
legStr= {'Tailboom';'F"2MC-Tailboom'};
legend (legStr)
end
case 'Tailboom'
legStr= {'Baseline Model'; 'Experiment'};
legend (legStr)
end

% Tailor frequency response plots based on transfer function type:
y str= P.Plot.ylabel;

set(gca, 'fontSize',16)

set (findall (gcf, "type', 'text'), "fontSize', 16)
ylabel (y str)

xlim([w (1) w(end)]/(2*pi))

xlabel ('Frequency [Hz]")

switch scaleTB
case 'small'
set(gca, "XTick',[5 7 9 11 13 15 20 25])
case '"full'
set(gca, "XTick',[3 4 5 6 7 8 9])
case 'OH-58"
set (gca, 'XTick',[1 2 5 8 12 20 30 50])

% Process and plot experimental data
function experimentalDataProcessor (P)
Process and plot experimental data.
INPUT 1: P - Empty struct P.

o\

o

o

o\

Sensor data:

Accelerometer: PCB Model 353B02

Sensitivity (+-15%): 20mV/g, 2.04mvV/(m/s”2)
http://www.pcb.com/Products.aspx?m=353B02#.UuAhgRA05ph

o oo

o

o

Load cell: PCB Model 208C02
Sensitivity (+-15%): 50mV/1bf, 11241mV/kN
http://www.pcb.com/Products.aspx?m=208C02#.UuAhlBAo5ph

o\

o

o

Vibrometer: Polytech OFV 5000
Sensitivity: 640 micron/V

o\

)

% Sensor amplifier gains:
gainAccel= P.Data.gainAccel;
gainVibe= P.Data.gainVibe;
gainLoad= P.Data.gainLoad;

% Sensor sensitivity:

senAccel= 2.04/1000; % V per m-s*-2
senLoad= 11241/1000000; % V/N
senVibe= (le6)/640; % V/m

X

140

141

o)

% Unpack variables:

TFmode= P.TFmode;

units= P.Simulation.units;
measurement= P.Data.measurement;
avgWindow= P.Data.avgWindow;
filename= P.Data.filename;

% Count the number of data files to be plotted:
[~,n]= size(filename) ;

% Initialize frequency, phase, and magnitude data cell arrays:
[freq,phas,mags]= deal(cell(n,1l));

% Process data files:

for i= 1:n
% Read the i-th data file:
a= dlmread(filename{i});

oo

Unpack data.

Col 1: frequency (Hz)

Col 2: amplitude (V/V)

Col 3: phase (deq)

f=a(:,1); mag= a(:,2); ph= a(:,3);

o° oo

o

[

% Scale measurements according to sensor:
switch measurement
case 'accelerometer'

mag= mag*gainLoad/gainAccel;

mag= mag*senLoad/senAccel; % m-s"-2/N

% Convert acceleration to displacement:

if (TFmode==1)
w= £*2*pi;
mag= mag./ (w.”"2);

end

case 'laser'

if (strcmp(filename{i}, 'empty with foam at valve.lvm'))
mag= mag*gainLoad/gainVibe*10;

elseif (strcmp(filename{i}, 'open.lvm'))
mag= mag*gainLoad/gainVibe*10;

else
mag= mag*gainLoad/gainVibe;
end
mag= mag*senlLoad/senVibe;
otherwise

error ('Select a vibration measurement device.')
end

% Sliding window average:
if (avgWindow<=0)
magAvg= mag;
else
magAvg= filter (ones(1l,avgWindow) /avgWindow, 1, mag) ;
end
% Trim data:
upkF= 40; lowF= 1;
magAvg= magAvg (f<=upF & f>=lowF);
ph= ph(f<=upF & f>=lowF);
f= f (f<=upF & f>=lowF);

% Perform unit conversions:
if (strcmp (units, "English'))
% Convert m/N to in/lbf:
magAvg= 175.126835*magAvg;
end

freq{i}= £;

phas{i}= ph;

mags{i}= magAvg;
end

% Plot data
hold all
switch n
case 1
plot (freqg{1l},20*1ogl0 (mags{1l}))
case 2
plot (freq{l},20*1ogl0 (mags{l}),freq{2},20*10ogl0 (mags{2}))
case 3
plot (freg{l},20*1logl0 (mags{l}),freq{2},20*1ogl0 (mags{2}), ...
freq{3},20*1ogl0 (mags{3}))
case 4
plot (freq{l},20*1ogl0 (mags{l}),freq{2},20*1ogl0 (mags{2}),...
freg{3},20*1ogl0 (mags{3}), freq{4},20*1ogl0 (mags{4}))
case 5
case 6
plot (freq{l},20*1logl0 (mags{l}),freq{2},20*1ogl0 (mags{2}),...
freqg{3},20*1ogl0 (mags{3}), freq{4},20*1ogl0 (mags{4}),...
20*10gl0 (mags{5}),20*1ogl0(mags{6}))
end
legend('Theoretical Baseline', 'Theoretical F*"2MC', ...
'Experimental Baseline', 'Experimental Open Valve', ...
'Experimental Closed Valve')

)

% Compute beam frequency response function

function P= computeBeamFRF (P, beamSys, w)

Subfunction for computing tailboom frequency responses.

INPUT 1: P - Data structure containing parameter values.

INPUT 2: beamSys - State space model of the tailboom structure.
INPUT 3: w - Vector of frequencies at which to compute FRFs [rad/s].

o 00 o o o

o

OUTPUT 1: P - Data structure containing parameter values.

o©
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o

magBeam= bode (beamSys, w) ;

magBeam= squeeze (magBeam(1l,1,:));
P.Frequency.magBeam= magBeam;
end

% Transform system into first-order form

function [A,B,C,D]= beam2StateSpace (P)

beam2StateSpace.m

Function converts the function space representation of the tailboom model
into a state space representation.

INPUT 1: P - Struct containing all passing parameters.

OUTPUT 1: [A B C D] - State space representation of tailboom system

o o o° o oP

o\
o

143

o

3 Unpack parameters:

N= P.Simulation.nDimensions;

psi Out= P.Basis.psi Out;

psi O doublePrime= P.Basis.psi 0 doublePrime;
psi 0 triplePrime= P.Basis.psi 0 triplePrime;
EI 0= P.EI 0;

% Unpack beam matrices:

Mbeam= P.Beam.M v; Kbeam= P.Beam.K v;
Cbeam= P.Beam.C v; Fbeam= P.Beam.F v;

switch P.Simulation.scaleTB
case 'full'
Convert tailboom system to state space
% Cantilever beam "A" matrix:
A= [zeros (N) eye (N) ;
- (Mbeam”-1) *Kbeam - (Mbeam”™-1) *Cbeam] ;

o\

% Cantilever beam "B" matrix:
B= [zeros(N,1);
(Mbeam”™-1) *Fbeam] ;
% Cantilever beam "C" matrix:
switch P.TFmode
case {1,4,5,6,7,8,10}
% Tip displacement
C= [psi Out' zeros(1l,N)];
D= 0;
case 2
% Root moment
C= [-EI O*psi 0 doublePrime' zeros(1,N)];

% Root shear
cll= -EI O*psi 0 triplePrime'-EI Op*psi 0 doublePrime';
= [cll zeros(1l,N)];
D= 0;
case 9
% Tip acceleration [g]
a= zeros (1l,2*N);
a(N+1:2*N)= psi Out';

C= a*A;
D= a*B;
otherwise

error ('Choose a transfer function.')
end
case 'OH-58"
Convert tailboom system to state space
% Cantilever beam "A" matrix:
A= [zeros (N) eye (N) ;
- (Mbeam”-1) *Kbeam - (Mbeam”-1) *Cbeam] ;

o

% Cantilever beam "B" matrix:
B= [zeros(N,1);
(Mbeam”-1) *Fbeam] ;
% Cantilever beam "C" matrix:
switch P.TFmode
case {1,4,5,6,7,8,10}
% Tip displacement
C= [psi Out' zeros(1l,N)];
D= 0;

144

case 2
% Root moment
C= [-EI O*psi 0 doublePrime' zeros(1,N)];
D= 0;

case 3

% Root shear
cll= -EI O*psi 0 triplePrime'-EI Op*psi 0 doublePrime';
C= [cll zeros(1,N)];
D= 0;
case 9
% Tip acceleration [g]
a= zeros (1l,2*N);
a(N+1:2*N)= psi Out';

C= a*A;
D= a*B;
otherwise

error ('Choose a transfer function.')
end
case 'small'
% Unpack parameters
[N,~]= size (Mbeam) ;

% Convert tailboom system to state space
% Cantilever beam "A" matrix:
A= [zeros (N) eye (N) ;
- (Mbeam”-1) *Kbeam - (Mbeam”™-1) *Cbeam] ;

% Cantilever beam "B" matrix:
B= [zeros(N,1);
(Mbeam”™-1) *Fbeam] ;
% Cantilever beam "C" matrix:
switch P.TFmode
case {1,4,5,6,7,8,10}
% Tip displacement

C= zeros(1l,2*N);
C(l:length(psi Out))= psi Out;
D= 0;
case 2
% Root moment
C= [-EI O*psi O doublePrime' zeros(1l,N)];
D= 0;
case 3

% Root shear
cll= -EI O*psi 0 triplePrime'-EI Op*psi O doublePrime';
C= [cll zeros(1l,N)];
D= 0;
case 9
% Tip acceleration [g]
a= zeros (1l,2*N);
a(N+1:2*N)= [psi Out; 0; 0]';

C= a*A;
D= a*B;
otherwise
error ('Choose a transfer function.')
end
otherwise

error ('Select a tailboom scale.')
end

145

% Compute Beam Matrices

function [M,K,C,F,P]= computeBeamMatrices (P)
computeBeamMatrices.m

Function computing system matrices of a helicopter tailboom.
INPUT 1: P - Struct containing all passing parameters.

OUTPUT 1: [M K C F] - Function space representation of tailboom

o o0 oo o

o\
o

oo

Compute beam system matrices

% Forcing vector:
F= force(P);

% Inertia matrix:
[M,P]= mass (P);

% Stiffness matrix:
[K,P]l= stiff (P);
P.Beam.K orig= K;

switch P.Simulation.scaleTB
case 'full'

Meff= M;
Keff= K;
Feff= F;
case 'OH-58"
Meff= M;
Keff= K;
Feff= F;

case 'small'
% Unpack variables:
Psi L= P.Basis.psi L;
Psi Lp= P.Basis.psi L prime;
ml= P.Beam.ml;
m2= P.Beam.m2;
m3= P.Beam.m3;
R= P.Beam.R;

% Initialize mass and stiffness matrices, and forcing vector:
N= P.Simulation.nDimensions;

[Meff,Keff]= deal (zeros (N+2,N+2));

Feff= zeros (N+2,1);

% Populate mass matrix:

Meff (1:N,1:N)= M;

Meff (N+1,N+1)= m2;

Meff (N+2,N+2)=(ml+m3/4) *R"2;

Meff (1:N,N+2)= R*cosd(69.18)*Psi L* (m1+m3/2);
Meff (N+2,1:N)= Meff (1:N,N+2)"';

% Define spring tuning parameters:

k= P.Beam.k;

Kt= P.Beam.Kt;

% Populate stiffness matrix:

Keff (1:N,1:N)= K + Kt*(Psi Lp*Psi Lp') + k*(Psi L*Psi L');
Keff (N+1,N+1)= k;
Keff (N+2,N+2)= Kt;
Keff (1:N,N+1)= -k*Psi L;

Keff (1:N,N+2)= -Kt*Psi Lp;
Keff (N+1,1:N)= Keff (1:N,N+1)"';
Keff (N+2,1:N)= Keff (1:N,N+2)"';
% Populate forcing matrix:

Feff(1:N,1)= F;

otherwise

error ('Select tailboom scale.')

end

% Compute eigensolutions:
[Phi,eigMat]= eig(Keff,Meff);

% Damping matrix:

if (P.Beam.dampingRatio==-1)
Ceff= damping(P);

else
% Impose uniform damping for all modes:
CModal= 2*P.Beam.dampingRatio*sqrt (eigMat) ;
Ceff= ((Phi')”"-1)*CModal* (Phi”~-1);

end

% Pack variables:

M= Meff;
C= Ceff;
K= Keff;
F= Feff;

% Compute mode shapes if desired:
if (P.Simulation.modeShape)
modePos= linspace (0,P.Beam.length,200);
calcBeamModeShape (M, Phi, modePos, 1,1,P, 'disp')
hold all
calcBeamModeShape (M, Phi,modePos,1,2,P, 'disp')
% Compute mode shape slopes:
calcBeamModeShape (M, Phi,modePos,2,1,P, "'slope')
hold all
calcBeamModeShape (M, Phi,modePos,2,2,P, "'slope')

)

% Compute Inertia Matrix

function [mass out,P]= mass (P)

Function computing entries for the tailboom mass matrix.
INPUT 1: P - Struct containing all passing parameters.
% OUTPUT 1: mass_out - NxN mass matrix.

o

o

% Unpack parameters:

N= P.Simulation.nDimensions;
% Initialize mass matrix:
mass_out= zeros (N, N);

switch P.Simulation.scaleTB
case 'full'
% Unpack parameters:
X _r= P.Beam.rotorPosition;

146

case

o

for a= 1:N
for n= a:N
m_r= P.Beam.massRotor;
m_s= P.Beam.horizStabMass;
x s= P.Beam.horizStabPosition;
% Integrate mass properties:
if (a==1 && n==1 && P.Simulation.debug==0)
[integral,P]= integ(a,n, 'M',P);
elseif (P.Simulation.debug==1)
% If desired, compute tailboom mass and exit program
% for debugging purposes:
mStruct= 2.2*integ(a,n, 'M',P);
mD= 2.2*P.Beam.driveShaftMass*P.Beam.length;
m dead= P.Beam.mass;
fprintf ('TB skin + stringer mass: %g lb\n',mStruct)
fprintf ('"TR drive shaft mass: $g 1lb\n',mD)
fprintf ('TB rotor mass: %g lb\n',2.2*m r)
fprintf ('TB horiz. stabilizer mass: %g 1lb\n',2.2*m_s)
fprintf ('TB unmodeled mass: %g lb\n',2.2*m dead)
m tot= mStruct+mD+2.2* (m r+m s+m dead);
fprintf ('TB total mass: %g lb\n',m tot)
error ('Debugging tailboom mass!')
else
integral= integ(a,n, 'M',P);
end
% Compute effect of rotor mass:
rotorMass= m r*PsiJN(x r,a,n,P);
% Compute effect of horizontal stabilizer:
stabMass= m_s*PsiJN(x s,a,n,P);
% Compute effect of unmodeled structural mass:
m_d= P.Beam.mass;
x d= P.Beam.massPosition;
deadMass= m_d*PsiJN(x d,a,n,P);
% Compute rotational inertia of vertical stabilizer:
% Fins extend about 42in on top and bottom. They are shaped
% like parallelograms.
r fin= 21*.0254; % Estimate of vertical fin centroid [m].
I r= 2*(15/2.2)*r fin"2;
mRot= I r*dlPsiJN(x r,a,n,P);
% Sum all mass components:
mass_out (a,n)=integral+rotorMass+mRot+stabMass+deadMass;
% Duplicate off-diagonal terms (symmetry).
mass_out (n,a)= mass out(a,n);
end
end
'OH-58"

% Compute each

entry of the mass matrix:

% Unpack parameters:
X _r= P.Beam.rotorPosition;

147

case

o)

% Compute each entry of the mass matrix:

for a= 1:N

end

for n= a:N
m r= P.Beam.massRotor;
m s= P.Beam.horizStabMass;
X s= P.Beam.horizStabPosition;
% Integrate mass properties:
if (a==1 && n==1 && P.Simulation.debug==0)
[integral,P]= integ(a,n, 'M',P);
elseif (P.Simulation.debug==1)

% If desired, compute tailboom mass and exit program

% for debugging purposes:
mStruct= 2.2*integ(a,n,'M',P);

mD= 2.2*P.Beam.driveShaftMass*P.Beam.length;

fprintf ('TB skin + stringer mass: %g lb\n',mStruct)
fprintf ('"TR drive shaft mass: $g 1lb\n',mD)

fprintf ('TB rotor mass: %g lb\n',2.2*m r)

fprintf ('TB horiz. stabilizer mass: %g 1lb\n',2.2*m_s)

m_tot= mStruct+mD+2.2* (m_r+m_ s);
fprintf ('TB total mass: %g lb\n',m tot)
error ('Debugging tailboom mass!')

else
integral= integ(a,n, 'M',P);

end

% Compute effect of rotor mass:

rotorMass= m r*PsiJN(x _r,a,n,P);

% Compute effect of horizontal stabilizer:
stabMass= m_s*PsiJN(x s,a,n,P);

o\

Compute rotational inertia of vertical stabilizer:
Fins extend about 42in on top and bottom. They are
like parallelograms.

_fin= 21%.0254; % Estimate of vertical fin centroid
I r= 2*(15/2.2)*r fin"2;

mRot= I r*dlPsiJN(x r,a,n,P);

o oo

-

)

% Sum all mass components:

mass_out (a,n)=integral+rotorMass+l*mRot+stabMass;

% Duplicate off-diagonal terms (symmetry).
mass_out (n,a)= mass out(a,n);

end

'small'
% Unpack parameters:
L= P.Beam.length;

if

(N==3)

% Compute rotational effect of top mass:
topMass= P.Beam.vertStabMass;

tubel= P.Beam.vertStabLength;

rotTop= topMass* (tubeL+0.072591)"2;

% Compute rotational effect of vertical tube:
mTube= P.Beam.vertStabTubeMass;

shaped

148

ITube= (1/3) *mTube*tubel”2;
Il= rotTop + ITube;
ml= TI1;
else
% Compute rotational effect of top mass:
topMass= P.Beam.vertStabMass;
ml= topMass;
tubel= P.Beam.vertStabLength;
mTube= P.Beam.vertStabTubeMass;
end
% Compute mass of side masses + horizontal tubes:
massSide= P.Beam.horizStabMass;
massSideBar= P.Beam.horizStabTubeMass;
m2= massSide+massSideBar;

% Piezo stacks:
ms= P.Beam.stackMass;
stacLoc= P.Beam.stackMassLoc;
% Tail plate mass:
mp= P.Beam.tailPlateMass;
% Compute each entry of the mass matrix:
for a= 1:N

for n= a:N

% Integrate mass properties:

if (a==1 && n==1)

[integral,P]= integ(a,n, 'M',P);
elseif (P.Simulation.debug==1)

% If desired, compute tailboom mass and exit program

% for debugging purposes:

mStruct= 2.2*integ(a,n,'M',P);

fprintf ('TB skin + stringer mass: %g lb\n',mStruct)
fprintf ('TB tail plate mass: %g 1lb\n',2.2*mp)

fprintf ('TB stack mass: %g 1lb\n',2.2*ms)

fprintf ('"TR stab mass: %g lb\n',2.2* (m2+mTube+topMass))

m_tot= mStruct+2.2* (ms+m2+mp+mTube+topMass) ;
fprintf ('TB total mass: %g lb\n',m tot)
error ('Debugging tailboom mass!"'")

else
integral= integ(a,n, 'M',P);

end

% Compute stack inertia:

stacMass= ms*PsiJN(staclLoc,a,n,P);

% Compute tail plate inertia:
platMass= mp*PsiJN(L,a,n,P);

% Sum all mass components:

if (N==3)
% Compute vertical stabilizer inertia:
vertMass= ml*PsiJN(L,a,n,P);

mass_out (a,n)= integral + stacMass + platMass + vertMass;

else
mass_out (a,n)= integral + stacMass + platMass;
end

)

% Duplicate off-diagonal terms (symmetry).

149

150

mass_out(n,a)= mass out(a,n);
end
end

o\

Pack variables:

P.Beam.R= tubelL+0.072591;
P.Beam.ml= ml;

P.Beam.m2= m2;

P.Beam.m3= mTube;

otherwise
error('Select a tailboom scale.')

% Compute Damping Matrix

function [damp out,P]= damping (P)

Function computing entries for the tailboom damping matrix.
INPUT 1: P - Struct containing all passing parameters.

% OUTPUT 1: damp out - NxN damping matrix.

o

oo

% Unpack parameters:
N= P.Simulation.nDimensions;
% Initialize damping matrix:
damp out= zeros(N,N);
% Compute each entry of the damping matrix:
for b= 1:N
for n= b:N
if (b==1 && n==1)
[integral,P]= integ(b,n,'C',P);

else

integral= integ(b,n,'C',P);
end
damp out (b,n)= integral;

)

% Duplicate off-diagonal terms (symmetry).
damp out (n,b)= integral;

% Compute Stiffness Matrix

function [stiff out,P]= stiff (P)

Function computing entries for the tailboom stiffness matrix.
INPUT 1: P - Struct containing all passing parameters.
OUTPUT 1: stiff out - NxN stiffness matrix.

o oo

o

% Unpack parameters:
N= P.Simulation.nDimensions;
% Initialize stiffness matrix:
stiff out= zeros(N,N);
% Compute each entry of the stiffness matrix:
for c= 1:N

for n= c:N

if (c==1 && n==1)

151

[integral,P]= integ(c,n,'K',P);
else
integral= integ(c,n, 'K',P);
end
stiff out(c,n)= integral;
% Duplicate entires:
stiff out(n,c)= stiff out(c,n);

)

% Compute Forcing Vector

function force out= force (P)

Function computing entries for the generalized forcing matrix.

INPUT 1: P - Struct containing all passing parameters.

% OUTPUT 1: force out - N x # of inputs, partial generalized forcing.

oo

o\

oo
o

)

% Unpack parameters:
F= P.Beam.verticallLoad;
N= P.Simulation.nDimensions;
x F= P.Beam.verticalLoadPos;
% Initialize forcing vector:
force out= zeros(N,1);
% Compute each entry of the forcing vector:
for k= 1:N
fSum= 0;
for i= 1l:length (F)

fSum= fSum + F(i)*Psi(x F(i),k,P);
end
force out (k)= fSum;

o
\

s List of parameter subfunctions
Some system parameters are functions of position and therefore must be
defined separately in nested functions below.

o\

o

o
o

function R out= stringRadius(P,s,1i)

Function describing tailboom radius as a function of position
along tailboom central axis.

INPUT 1: P - Struct containing all passing parameters.
INPUT 2: s - Position along tailboom [m]

OUTPUT 1: R out - Tailboom radius at position s [m]

o0 o o° o oo

o\

rStringerBase= P.Stringer.radius (i) ;
taper= P.Beam.taper;
L= P.Beam.length;

if (taper~=1)

R out= rStringerBase* (1-(l-taper) *s/L);
else

R out= rStringerBase*ones (size(s));

function R out= beamRadius (P, s)

Function describing tailboom radius as a function of position
along tailboom central axis.

INPUT 1: P - Struct containing all passing parameters.
INPUT 2: s - Position along tailboom [m]

OUTPUT 1: R out - Tailboom radius at position s [m]

o0 d° o° o oP

o

rBase= P.Beam.baseRadius;
taper= P.Beam.taper;
L= P.Beam.length;

if (taper~=1)

R _out= rBase* (1-(l-taper)*s/L);
else

R out= rBase*ones (size(s));

Function describing tailboom radius as a function of position
along tailboom central axis.

INPUT 1: P - Struct containing all passing parameters.
INPUT 2: s - Position along tailboom [m]

OUTPUT 1: R out - Tailboom radius at position s [m]

0 o® o o oo

oo

tH= P.Beam.taperHeight;
bH= P.Beam.baseHeight;
L= P.Beam.length;

if (tH~=1)

R out= bH* (1-(1-tH)*s/L);
else

R out= bH*ones (size(s));
end
end

)

function R out= beamWidth (P, s)

Function describing tailboom radius as a function of position
along tailboom central axis.

INPUT 1: P - Struct containing all passing parameters.
INPUT 2: s - Position along tailboom [m]

OUTPUT 1: R out - Tailboom radius at position s [m]

o 0 o° o oP

o

tW= P.Beam.taperWidth;
bW= P.Beam.baseWidth;
L= P.Beam.length;

if (tw~=1)

R out= bW* (1- (1-tW) *s/L) ;
else

R _out= bW*ones (size(s));
end
end

)

function A out= beamArea (P, s)

o\

oe

of position along tailboom central axis.

INPUT 1: P - Struct containing all passing parameters.
INPUT 2: s - Position along tailboom [m]

OUTPUT 1: A out - Tailboom cross-sectional area at s [m"2]

o° o oo

o\

Function describing tailboom cross-sectional area as a function

152

switch P
case

case

case

othe

end

.Simulation.scaleTB
'full!
t= P.Beam.skinThickness;
% Compute cross-sectional area of cone:
coneArea= pi*t* (2*beamRadius (P,s)-t);
% Compute stringer area:
A stringers= 0;
numStringers= length (P.Stringer.area);
for i= l:numStringers
A stringers= A stringers + pi*stringRadius(P,s,1i)."2;
end

Compute sum of stringer and skin areas:

o\

o

Make sure to update length in the area moment calculations
A stringers(s>=12*.0254)= 0;
A out= A stringers + coneArea;
'OH-58"
t= P.Beam.skinThickness;

% Compute cross-sectional area of cone:
coneArea= pi*t* (2*beamRadius (P,s)-t);
% Compute stringer area:
A stringers= 0;
numStringers= length (P.Stringer.area);
for i= l:numStringers
A stringers= A stringers + pi*stringRadius(P,s,1i)."2;
end

)

% Compute sum of stringer and skin areas:

% Make sure to update length in the area moment calculations
A stringers(s>=12*.0254)= 0;
A out= A stringers + coneArea;
'small'
% Unpack variables:
t= P.Beam.skinThickness;
tS= P.Stringer.thickness;
cW= P.Stringer.cornerWidth;
sW= P.Stringer.sideWidth;
% Compute cross-sectional area of skin:
skinOut= beamWidth (P, s) .*beamHeight (P, s) ;
skinIn= (beamWidth (P,s)-2*t).* (beamHeight (P,s)-2*t);
skinArea= skinOut-skinIn;
% Compute stringer area:
cornerArea= cW™2 - (cW-tS)"2;
sideArea= sW*tS;

stringArea= 4*cornerArea + 4*sideArea;

% Compute sum of stringer and skin areas:
A out= skinArea + stringArea;

rwise

error ('Choose a tailboom scale.')

too.

too.

153

function E out= E(~,~)

o° o°

oo

INPUT
INPUT

o° oo

o

Function describing tailboom material modulus as a function of
position along tailboom central axis.

1: P - Struct containing all passing parameters.
2: s - Position along tailboom [m]

OUTPUT 1: E out - Tailboom Young's modulus at position s [GPa]

% Elastic modulus of aluminum:
E out= 70e9;

function I out= Izz(P,s)
% Function describing tailboom z-moment of inertia as a function of

oo

o

INPUT
INPUT

o0 o

oo

position along tailboom central axis. For lateral flexure.

1: P - Struct containing all passing parameters.
2: s - Position along tailboom [m]

OUTPUT 1: I out - Tailboom moment of inertia [kg*m"2]

switch P.Simulation.scaleTB

case

'full'

Compute skin moment of inertia:
% Beam skin thickness:

t= P.Beam.skinThickness;

oo

[

% Stringer radial position:
stiffAng= P.Stringer.radialPosition;

% Skin area moment of inertia:
I skin= 0.25*pi* (beamRadius(P,s)."4 - (beamRadius (P,s)-t)."4);

% Compute stringer moment of inertia:
if (isempty(stiffAng))

I stiff= 0;
else

o

Calculate distance of each stringer center from the neutral
axis of the beam:

numStringers= length(P.Stringer.area);

I stiff= 0;

for i= l:numStringers

% Calculate ith stringer area:

A stringer= pi*stringRadius(P,s,1i)."2;

oo

)

% Calculate radial distance of ith stringer:
radi= beamRadius (P,s)-t-stringRadius (P,s,1)/2;

% Calculate offset distnace of ith stringer:
offDist= radi*sin(stiffAng(i));

% Area moment of the ith stringer about its center:
I center stiff= 0.25*pi*stringRadius(P,s,1i)."4;

I stiff= I stiff + I center stiff+A stringer.*offDist."2;
end
end

% Make sure to update length in the area calculations too.
I stiff(s>=12*.0254)= 0;

154

case

case

I out= sum(I stiff,1)' + I skin';
'OH-58"

% Compute tailboom area moment.

EO= E(0);

EI out= zeros(size(s));

% OH-58C representative data:
removed

% Convert units:
Elzz= EIzz*4.44822162*0.00064516;

for j= 1l:length(s)

sj= s(J);

EI out(j)= EIzz(length(x(sj>=x)));
end

I out= EI out'/EOQ;

'small'
% Unpack variables:
t= P.Beam.skinThickness;
tS= P.Stringer.thickness;
cW= P.Stringer.cornerWidth;
sW= P.Stringer.sideWidth;

% Compute skin moment of inertia:

I skinOut= (beamWidth (P, s) .* (beamHeight (P,s)."3))/12;

I skinIn= (beamWidth (P, s) -2*t) . * ((beamHeight (P, s) -2*t) ."3)/12;
I skin= I skinOut - I skinIn;

% Side stringers:
I side= tS*(sW"3)/12;

% Top stringers:
I _top= sW*(tS”"3)/12 + (tS*sW)* (0.5*beamHeight (P,s)-tS/2-t)."2;

% Corner stringers:

a= cW;

A corn= tS*(2*a-tS);

Cy= (a"2+a*tS-tS"2)/(2*(2*a-tS));

y= a-Cy;

I corn 0= (1/3) *(£S*y"3 + a*(a-y)"3 - (a-tS)*(a-y-tS)"3);
I corn= I corn O + A corn*(0.5*beamHeight (P,s)-t-Cy) ."2;

% Assemble stringers + skin:
I string= 2*I side + 2*I top + 4*I corn;
I out= I string' + I skin';

otherwise

error ('Choose a tailboom scale.')

function rho out= rho(~,~)
Function describing tailboom density as a function of position
along tailboom central axis.

o o0 o o oo

o\

INPUT
INPUT

l: P - Struct containing all passing parameters.
2: s - Position along tailboom [m]

OUTPUT 1: rho out - Tailboom density at position s [kg*m"-3]

155

156

o

% Density of aluminum:
rho out= 2700;

% Numerical Integrator

function [integ out,P]= integ(j,n,mat,P)

% Computes integrals to determine entries for inertia, damping, and
stiffness matrices.

INPUT 1: J - Integer indexing value.

INPUT 2: n - Integer indexing value.

INPUT 3: mat - Char specifying which integrand to compute:

o o° oo

o

% 'M' == Inertia matrix

% 'K' == Stiffness matrix

% 'C' == Damping matrix

% 'T' == Compute F2MC tube strain

% INPUT 4: P - Struct containing all passing parameters.

o

OUTPUT 1: integ out - Resulting integral.
OUTPUT 2: P - Struct containing all system parameters.

oo

oo
o

o

Unpack parameters:
= P.Beam.x;

X

function y= f(s)
switch P.Simulation.scaleTB
case 'full'
Tailboom mass known, but calculation does not account for
structural elements like bulkheads. Assume weight
distribution matches that calculated.
sff= 2.4207;

o oo

o

if (~isfield (P, 'tailboomStruct'))
P.tailboomStruct= sff*rho (P, s).* (beamArea (P,s));
end

% m_temp= rho*A(x):
m_temp= P.tailboomStruct+P.Beam.driveShaftMass;

% Mass matrix integrand:
if (P.Simulation.debug==1)
y= P.tailboomStruct;
else
y= PsiJN(s,j,n,P).*m temp;
end
case 'OH-58'
Tailboom mass known, but calculation does not account for
structural elements like bulkheads. Assume weight
distribution matches that calculated.
sff= 2.6196;

o° oo

o\

if (~isfield (P, 'tailboomStruct'))
P.tailboomStruct= sff*rho(P,s).* (beamArea (P,s));
end

% m_temp= rho*A(x):
m temp= P.tailboomStruct+P.Beam.driveShaftMass;

% Mass matrix integrand:
if (P.Simulation.debug==1)
y= P.tailboomStruct;
else
y= PsiJN(s,3j,n,P).*m temp;
end
case 'small'
if (~isfield (P, 'tailboomStruct'))

P.tailboomStruct= rho (P, s) .* (beamArea (P, s))
end

% Mass matrix integrand:
if (P.Simulation.debug==1)
y= P.tailboomStruct;
else
y= PsiJN(s,j,n,P).*P.tailboomStruct;
end
otherwise

error ('Select tailboom scale.')

function y= g(s)
if (~isfield (P, "'structDamp'))
P.structDamp= Gam.*E(P,s) .*Izz(P,s);
end

y= Gam(P,s) .*E(P,s) .*Izz(P,s).*d2PsiJN(s,j,n,P)"' +...
P.Beam.dampingCoeff*PsiJN(s,j,n,P)"';

switch P.Simulation.scaleTB
case 'full'

TB mass is known, but based on predicted stiffness the model
natural frequencies end up being too high. There must be some
unmodeled compliance in the structure.

sf= 0.831;
case 'OH-58'

o° oo

o\

sf=1; % EI(x) data given, no correction needed.
case 'small'

sf= 1;
otherwise
error ('Select a tailboom scale.')
end
function y= h(s)
if (~isfield (P, 'EIV'"))
% Model prediction:
P.EIV= E(P,s) .*Izz(P,s);
end
y= sf*P.EIV.*d2PsiJN(s,j,n,P)"';
end

157

% Define integral for F2MC tube strain:

function y= t(s)
y= P.Tube.offset{n}.*d2Psi(s,3j,P);
end

switch mat

case 'M'

integ out= trapz(x,f(x));
case 'C'

integ out= trapz(x,g(x));
case 'K'

integ out= trapz(x,h(x));
case 'T'

xTube= P.Tube.xTube;
integ out= trapz (xTube, t (xTube));

end
end
S o
o Cl

% Basis Function
function Psi out= Psi(s,]j,P)
Family of basis functions used for the Ritz series method.

oo

% INPUT 1: s - Position along tailboom segment [m].
% INPUT 2: Jj - Integer indexing value.
% INPUT 3: P - Struct containing all passing parameters.

oo

OUTPUT 1: Psi out - The jth basis function evaluated at x meters.

% Unpack parameters:
L= P.Beam.length;
scaleTB= P.Simulation.scaleTB;

switch scaleTB
case {'small', 'OH-58"}
% Define family of basis functions Psi:
sig j= P.Simulation.kn;
a= sig j(3);

Psi out= sin(a*s)+sinh(a*s)+cosh(a*L) * (cosh(a*s)*sin(a*L)-...
sin(a* (L-s))+cos(a*L) *sinh (a*s))+sinh(a*L) * (cos (a* (L-s))-...
cos (a*L) *cosh(a*s)-sin(a*L) *sinh (a*s));

Psi out= Psi out/(l+cos(a*L) *cosh(a*L)-sin(a*L)*sinh(a*L));
case 'full'

% Define family of basis functions Psi:
[sig j,R Jj1= sig(j);
k= sig j/L;

Psi out= sin(k*s) - sinh(k*s) + R_j*(cos(k*s) - cosh(k*s));

% First Positional Derivative of Basis Function
function dlPsi out= dlPsi(s,j,P)

Calculates numerically the first derivative of Psi jJ.
INPUT 1: s - Position along tailboom segment [m].

o\

o\

158

% INPUT 2: Jj - Integer indexing value.
% INPUT 3: P - Struct containing all passing parameters.
% OUTPUT 1: Psi out - Numerical output of product evaluated at x.

oo

Unpack parameters:
L= P.Beam.length;
scaleTB= P.Simulation.scaleTB;

switch scaleTB
case {'small', 'OH-58"}
sig j= P.Simulation.kn;
a= sig _j(3);

dlPsi out= a*cos(a*L)*cos(a*s) *cosh(a*L)+a*cos (a*s)*cosh(a*L) *2+...
a* (cos(a*L)”"2) *cosh(a*s)+a*cos (a*L) *cosh (a*L) *cosh (a*s) +
a*cosh(a*s)*sin(a*L) "2 + a*cosh(a*L)*sin(a*L)*sin(a*s) +
a*cos (a*s)*sin(a*L) *sinh (a*L) -
a*cosh(a*s) *sin(a*L) *sinh (a*L) -
a*cos (a*L) *sin(a*s) *sinh(a*L) - a*cos(a*s)*sinh(a*L)"2 +
a*cosh(a*L) *sin(a*L) *sinh (a*s) -
a*cos (a*L) *sinh (a*L) *sinh (a*s) ;

dlPsi out= dlPsi out/ (l+cos(a*L)*cosh(a*L)-sin(a*L)*sinh(a*L));
case '"full'

[sig_3j,R_Jjl= sig(3);

k= sig_3/L;

dlPsi out= k*(cos(k*s) - cosh(k*s)+R _Jj*(-sin(k*s)-sinh(k*s)));

)

% Second Positional Derivative of Basis Function
function d2Psi out= d2Psi (s,], P)
Calculates analytically the first derivative of Psi j.

o

% INPUT 1: s - Position along tailboom segment [m].
% INPUT 2: Jj - Integer indexing value.
% INPUT 3: P - Struct containing all passing parameters.

o

OUTPUT 1: Psi out - Numerical output of product evaluated at x.

g g g S g g o
°

% Unpack parameters:
L= P.Beam.length;
scaleTB= P.Simulation.scaleTB;

switch scaleTB
case {'small', 'OH-58"}
sig j= P.Simulation.kn;
a= sig j(3);

d2Psi_out= (a"2)*(-sin(a*s)+sinh(a*s)+...
cosh (a*L) * (cosh(a*s) *sin(a*L) +sin(a* (L-s))+
cos (a*L) *sinh(a*s)) - sinh(a*L) * (cos(a* (L-s8)) +
cos (a*L) *cosh(a*s) + sin(a*L)*sinh(a*s)));

d2Psi_out= d2Psi out/ (l+cos (a*L)*cosh(a*L)-sin(a*L)*sinh(a*L));
case 'full'

[sig_3j,R_Jjl= sig(3);

k= sig j/L;

d2Psi out= -(k"2)*(sin(k*s)+sinh(k*s)+R_j* (cos(k*s)+cosh(k*s)));

159

o
e

o o o oP

o

o

oo

L= P.Beam.length;

Third Positional Derivative of Basis Function
function d3Psi out= d3Psi(s,]j,P)
Calculates analytically the first derivative of Psi j.

INPUT

INPUT 2:
INPUT 3:
OUTPUT 1:

1:

s -
j —
P —_

Psi

Position along tailboom segment [m].

Integer indexing value.

Struct containing all passing parameters.

out - Numerical output of product evaluated at x.

Unpack parameters:

scaleTB= P.Simulation.scaleTB;

switch scaleTB
case {'small', 'OH-58"}

sig j= P.Simulation.kn;
a= sig_j(3);

o
e

00 o® o° o o° oo

oo

o
e

o

°

o

°

o 00 d° o° o oo

o\

case

d3Psi out= -(a”3)*(cos(a*s)+cos(a*s)*sin(a*L)*sinh(a*L) -
cos (a*L) *sin(a*s) *sinh (a*L) +
cosh(a*s)* (-1 + sin(a*L)*sinh(a*L)) +

d3Psi_out= d3Psi out/(l+cos(a*L)*cosh(a*L)-sin(a*L)*sinh(a*L));

cos (a*L) *sinh (a*L) *sinh(a*s) + cosh(a*L)* (cos(a* (L-s))-...

cos (a*L) *cosh(a*s)-sin(a*L) *sinh (a*s)));

Vfull'
[sig 3,R J1= sig(3);
k= sig j/L;

d3Psi out= - (k"3) * (cos (k*s)+cosh(k*s)-...
R j*(sin(k*s)-sinh(k*s)));

Product of Basis Functions
function PsiJN out= PsiJN(s,j,n,P)
Calculates symbolically the product of two basis functions Psi j

and Psi n.

INPUT
INPUT
INPUT
INPUT
OUTPUT

R w N

Axial position along tailboom [m].
Integer indexing value.

Integer indexing value.

Struct containing all passing parameters.

_out - Numerical output of product evaluated at x.

Multiply Psi j and Psi n:
PsiJN out= Psi(s,Jj,P).*Psi(s,n,P);
end

Product of First Positional Derivative of Basis Functions
function dlPsi out= dlPsiJN(s,j,n,P)

Calculates numerically the product of the first derivative of two
basis functions Psi j and Psi_n.

INPUT
INPUT
INPUT
INPUT
OUTPUT

1:

o w N

Position along tailboom segment [m].
Integer indexing value.

Integer indexing value.

Struct containing all passing parameters.

_out - Numerical output of product evaluated at x.

160

% Differentiate once with respect to s:
dlpsi j= dlPsi(s,3j,P);

dlPsi n= dlPsi(s,n,P);

% Compute product of derivatives:
dlPsi out= dlPsi j.*d1lPsi n;

end

% Product of Second Positional Derivative of Basis Functions
function d2Psi out= d2PsiJN(s,Jj,n,P)

Calculates numerically the product of the second derivative of two
basis functions Psi j and Psi n.

oo

o

% INPUT 1: s - Position along tailboom segment [m].

% INPUT 2: j - Integer indexing value.

% INPUT 3: n - Integer indexing value.

% INPUT 4: P - Struct containing all passing parameters.

% OUTPUT 1: Psi out - Numerical output of product evaluated at x.

% Differentiate twice with respect to x:
d2Psi j= d2Psi(s,j,P);

d2Psi n= d2Psi(s,n,P);

% Compute product of derivatives:
d2Psi out= d2Psi j.*d2Psi n;

end

% Beam Characteristic Equation

function out= charEqgn(a,P)

Characteristic equation for a spring-hinged free beam.
EI= 1.0613e6 for small-scale TB.

Kt= K*EI;

o0 oo

oo

scaleTB= P.Simulation.scaleTB;
L= P.Beam.length;

switch scaleTB
case 'small'
K= 2.85;
case 'OH-58'
K= 5;
otherwise
error ('Characteristic equation not needed.\n')
end

al= a*L;
out= 1 4+ cos(al).*cosh(al) - (a/K).*(cosh(al).*sin(alL)-cos(al).*sinh(al));
end

% Mode Coefficient

function [k n,R n]= sig(n)

Coefficients for various modal solutions.

INPUT 1: n - Integer indexing value.

OUTPUT 1: k n - nth coefficient.

OUTPUT 2: R n - Second nth coefficient, if used by modal solution.

o° o oo

o\

161

.875104068711961;
.995540734875465;
.420352251041251;
.845130209102816;
.269908169872416;
.694686130641799;
.119464091411174;
.544242052180550;
.969020012949940;
.393797973719316;
95.818575934488692;
105.2433538952581;
114.6681318560274;
124.0929098167968;
133.5176877775662;
142.9424657383356;
(n<=length (kn))
k n= kn(n);
else
k_
end

if

n= (2*n-1)*pi/2;

num= sin(k _n)
den= cos(k n)
R n= -num/den;
end

127

136.
146.

+ sinh(k n);
+ cosh(k n);

.694091132974175;
.137168391046471;
.561944901806445;
.986722862692837;
.411500823462205;
.836278784231588;
.261056745000971;
.685834705770347;
.110612666539723;
.535390627309113;
.960168588078488;
108.
117.

3849465488479;
8097245096172;
.2345024703866;
6592804311560;
0840583919254;

120

130.
139.
152.

162

.854757438237613;
.278759532088234;
.703537555518299;
.128315516282619;
.553093477052002;
.977871437821385;
.402649398590754;
.827427359360144;
.252205320129519;
.676983280898895;
102.
111.

1017612416683;
5265392024377;
.9513171632070;
3760951239764;
8008730847458;
36724369910501];

function P= main (P)
% Main function for fluidlastic tailboom simulation.

o o o oP

oo

the time domain.

o° oo

o

(System.xlsx). If proper input arguments are given, the function
overrides up to two of the extracted parameter values.

o° o o

oo

main() on the initial run, and then fed back into main() to avoid
re-reading parameters from System Data.xlsx.

o° oo

o

OUTPUT 1: P - Data structure containing parameter values.

oo

o

Kentaro Miura

Mechatronics Research Laboratory

Vertical Lift Research Center of Excellence
Pennsylvania State University

o0 o

oo

o)

% Compute F2MC-tailboom system and frequency response

This segment of code computes the F2MC-tailboom state space model,
uses it to compute its frequency response. If resEst==1, the
F2MC-tailboom computation will include resistance estimation.

o o0 oo

o

\o

Define frequency vector [Hz]:

freq vec= P.Frequency.w/ (2*pi);

P.freq vec= freq vec;

% Compute F2MC-beam frequency response:
w= P.Frequency.w;

P.Frequency.fregInd= length(w);
magBeamTube= zeros(size(w));
P.Simulation.inertanceYesNo= 1;

resistanceModel= P.Simulation.res;
config= P.Simulation.config;

switch resistanceModel
case 'freqgDep'
for i= 1l:length (w)
ww= w(i);
f= ww/2/pi;
P= fluidlasticSys (P, £f,1i);

beamTubeSys= P.beamTubesys{i};
magBeamTube (1) = abs (evalfr (beamTubeSys,ww*1i)) ;

freqInd= P.Frequency.freqlInd;
if (i==freqglInd)
P.Frequency.magBeamTubeRes= magBeamTube (i) ;
end
end
case 'const'
% Use averaged inertance and resistance values:
switch P.Simulation.scaleTB
case 'OH-58'
fl= 3;
f2= 8;

163

This function computes frequency response for a cantilevered beam model
of a helicopter tailboom, as well as for a fluidlastic tailboom model. If
desired, this code can also simulate the tailboom/fluidlastic tailboom in

This function reads parameter values from a Microsoft Excel spreadsheet

INPUT 1: P - Data structure containing parameter values. Populated by

and

164

case 'small'

fl= 10;
2= 14;
otherwise

fl= w(l)/2/pi;
f2= w(end) /2/pi;
end

% Averaged resistance, inertance values to be used in simulation:
switch config
case {'coupled',6 'uncoupled'}
% Compute resistance factor at frequency extremes:
[Rfl,alphl]= computeResistance (P, f1l,1);
[Rf2,alph2]= computeResistance (P, £f2,1);

% Correct resistance:
Rf avg= mean([Rfl,Rf2]);
P.Tube.Rf avg= Rf avg;

% Compute inertance factor at frequency extremes:
[Ifl,~]= computelnertance (alphl);
[If2,~]= computelnertance (alph?2);

% Correct inertance:
I0= P.Tube.inertance(1l);
If avg= mean ([Ifl If2]);
I avg= IO*If avg;
P.Tube.I avg= I avg;
P.Tube.If avg= If avg;
case 'coupled tunable'
% Compute resistance factor at frequency extremes:
[Rfl,alphl]= computeResistance (P, fl,1);
R1fl= Rf1(1);
R2fl= Rf1(2);

alphlfl= alphl(1);
alph2fl= alphl (2);

[Rf2,alph2]=
R1f2= Rf2(1);
R2f2= Rf2(2);

computeResistance (P, £2,1);

alphlf2= alph2(1l);

alph2f2= alph2(2);

% Correct resistance:

RO1= P.Tube.resistancel (1);
R02= P.Tube.resistance2 (1);

Rl mean= mean ([R1£f1,R1£2]);
R2 mean= mean ([R2f1,R2f2]);

Rl avg= RO1*R1 mean;
R2_avg= R02*R2 mean;

P.Tube.R1 avg= Rl avg;

P.Tube.R2 avg= R2 avg;

% Compute inertance factor at frequency extremes:
[I1f1,~]= computelnertance (alphlfl);

[I2f1,~]= computelnertance (alph2fl);

end

[I1f2,~]= computelnertance (alphlf2);
[I2f2,~]= computelnertance (alph2f2);

% Correct inertance:
I01l= P.Tube.inertancel (1) ;
102

= P.Tube.inertance2 (1) ;

I1 mean= mean([I1fl I1£f2]);
I2 mean= mean ([I2fl I2£f2]);

I1 avg= I01*I1 mean;
I2 avg= I02*I2 mean;

P.Tube.Il avg= Il avg;
P.Tube.I2 avg= I2 avg;
end

% Frequency index:
fregInd= P.Frequency.freqglnd;

P= fluidlasticSys(P,-1,1);

beamTubeSys= P.beamTubesys{1l};

magBeamTube= bode (beamTubeSys,w) ;

magBeamTube= squeeze (magBeamTube (1,1,:));
otherwise

error ('Select a resistance model in tailSim.m."')

P.Frequency.magBeamTube= magBeamTube;

o
o

Convert response to desired output units:

P= convertUnits (P);

o

o0 o o°

o\

% Simulate beam-tube system
% In this cell block we simulate the beam-tube system using lsim.m.

Determine which input method to use:
inputType= 'Sinusoidal Input';
inputType= 'Step Input';

inputType= 'Impulse Input';

inputType= '0';

o

o\

Determine response type:
responseType= 'Tailboom';

responseType= 'Fluidlastic Tailboom';

% Simulate system using lsim.m:

i

(strcmp ('0'", inputType) ~=1)
% Define the simulation time span vector [s]:
endTime= 5;
tSpan= linspace (0,endTime, 10000*endTime) ;
% Define system and initial conditions:
switch responseType
case 'Tailboom'
g0= 0*P.Bbeam v;
sys= P.beamSys v;
case 'Fluidlastic Tailboom'
g0= 0*P.Bbeamtube{l};
sys= P.beamTubesys{1l};
end

165

166

o

% Define forcing input time history:
switch inputType
case 'Step Input'
fora= ' for a ';
stepMag= 1;
u= stepMag*ones (l,length(tSpan)):;
u(l)= 0;

inputType= [num2str (stepMag) 'N Step Input'];

% Simulate system:

[Z,t]= lsim(sys,u, tSpan,gl);
case 'Sinusoidal Input'

fora= ' for a ';

stepMag= 27.7;

fr= 6.88;

u= stepMag*sin (fr*2*pi*tSpan);

inputType= [num2str (stepMag) 'N Sinusoid, ' num2str(fr) 'Hz'];

% Simulate system:
[Z,t]= lsim(sys,u, tSpan,gl) ;
case 'Impulse Input'
fora= ' for an ';
[Z,t]= impulse (sys, tSpan);
end
% Plot figures
figure (2)
plot(t,2)
title({['Time History of ' responseTypel]; [fora inputType]})
xlabel ('Time [s]"'")
ylabel ('Tip Displacement [m]'")
switch P.Simulation.res
case 'const'
case 'fregDep'
error ('System frequency-dependent\n\n')
otherwise
error ('Select fluid model.\n\n'")
end
end

%% Debugging

% Compute and display damping estimate of first two resonance peaks:
[wnVec, ~]= damp (P.beamSys V) ;

zet= halfPowerEst (P.Frequency.w,magBeamTube) ;

)

% Display zero-frequency asymptote and resonances:

fprintf ('\n---——------------—— \n'")
fprintf ("START"')
fprintf ("\n-=——=—————— \n'")

if (length(wnVec)>2)
wnVec= wnVec (1:2:4)/ (2*pi);

end

fprintf (['Peaks at: ' num2str (wnVec') ' Hz\n'])

fprintf (['Zeta: ' num2str(zet(l)) '\n\n'l])

fprintf (['Added: ' num2str (100* (zet (l)-P.Beam.dampingRatio)) 'pct \n'])

% Display vibration reduction at the first resonance:
if (isfield (P, 'Frequency.magBeamTubeRes'))

167

magBeam= P.Frequency.magBeam;

magBeamRes= magBeam (fregInd) ;

magBeamTubeRes= P.Frequency.magBeamTubeRes;

magReduction= 20*1ogl0 (magBeamRes)-20*10gl0 (magBeamTubeRes) ;

fprintf (['Reduction: ' num2str (abs (magReduction)) ' dB \n\n'])
end

% Estimate component mass:
P.SystemMass= massF2MC (P) ;

%% Save data to struct P
% Save results into struct P:

trialNum= P.trialNum;

firstModeDampingVec= P.Results.firstModeDampingVec;
firstModeDampingVec (trialNum)= zet (1) ;

P.Results.firstModeDampingVec= firstModeDampingVec;
end

%% List of subfunctions:

o
©

function P= fluidlasticSys (P, f,1i)

Compute system parameters and matrices for various F2MC tube
configurations.

INPUT 1: P - Data structure containing parameter values.

INPUT 2: £ - Frequency [Hz] at which to compute system matrices.
INPUT 3: 1 - Index denoting the i-th entry of the frequency vector.
OUTPUT 1: P - Data structure containing parameter wvalues.

o d® o® o° o o° oo

o
o

% Compute tailboom-F2MC tube system matrices:
[Abt,Bbt,Cbt,Dbt, P]= computeBeamTubeMatrices (P, £f,1);

% Pack state matrices into struct P:
.Abeamtube{i}= Abt;
.Bbeamtube{i}= Bbt;
.Cbeamtube{i}= Cbt;
.Dbeamtube{i}= Dbt;

P.beamTubesys{i}= ss(Abt,Bbt,Cbt,Dbt) ;
end

% Estimate F2MC tube mass

function systemMass= massF2MC (P)

Estimates the mass of an individual F2MC tube filled with water. Does not
take into account fittings, inertia track, and accumulator.

INPUT 1: P - Vector containing frequency values.

OUTPUT 1: systemtMass - Estimate of F2MC system mass.

o o0 oo

o

% Unpack variables:

config= P.Simulation.config;
tubeType= P.Simulation.tubeType;
fluidDensity= P.Tube.fluidDensity;
numTubePairs= P.Tube.numTubePairs;

nTubes= 2*sum (numTubePairs) ;

switch config
case 'coupled'

innerRadius= P.Tube.innerRadius;
outerRadius= innerRadius + P.Tube.thickness;
tubelength= P.Tube.length;

switch tubeType
case 'F2MC'
% Define F2MC density:
laminateDensity= 1014; % Density of Reoflex 200 [kg/m"3]
fiberDensity= 1740; % Density of carbon fiber [kg/m"3]
tubeDensity= 0.5*laminateDensity + 0.5*fiberDensity;
% Compute F2MC tube volume:
tubeVolume= pi* (outerRadius.”2-innerRadius.”2) .*tubelength;
tubeMass= 2*dot (tubeVolume, numTubePairs) *tubeDensity;
case 'McKibben'
% Estimate of mass based on measurements for a 4" tube:
measF2MCmass= 0.029/6.5; % [kg/in]
lengthF2MC= tubeLength/0.0254 + 2;
tubeMass= nTubes*measF2MCmass*lengthF2MC;
end

% Compute F2MC fluid mass [kg]:
fluidVolume= tubelength*pi.*innerRadius.”"2;
tubeFluidMass= 2*dot (fluidVolume, numTubePairs)*fluidDensity;

% Compute inertia track fluid mass [kg]:
rp= P.Tube.portRadius;

lp= P.Tube.portlLength;

trackFluidMass= fluidDensity*lp*pi*rp”2;
% Compute inertia track mass [kg]:

tCu= (3/8-0.277)/2; % Based on 0.277" Cu tubing from McMaster-Carr
ACu= pi* ((rp+tCu*0.0254)"2 - rp*2); % [m"2]

switch P.Simulation.scaleTB
case 'OH-58"
rhoCu= 8960/9; % [kg/m"3], typical plastic
otherwise
rhoCu= 8960; % [kg/m"3]
end
trackMass= ACu*rhoCu;
valveMass= 0.1075;
circuitMass= trackMass + 3*valveMass;

% Total fluid mass [kg]:
fluidMass= trackFluidMass + tubeFluidMass;
% End fitting mass [kg]:
rodMass= 2*nTubes*0.17; % Estimated 157g, 170 is more conservative
% L-bracket mass [kg]:
switch P.Simulation.scaleTB
case 'small'
bracketMass= 2*(0.9/2.2);
otherwise
bracketMass= 2*((0.9/2.2)/13)*12;
end
% Estimated total mass [kg]:
totalMass= rodMass+tubeMass+bracketMass*l+fluidMass+circuitMass;

168

169

o)

% Print results:
txtl= 'End fittings + nuts + washers+barbs: %g [kgl, %g [1lb]l\n';
fprintf (txtl, rodMass, rodMass*2.2)
txt2= 'F2MC tubes x%g mass: %g [kg], %g [1lb]l\n';
fprintf (txt2,nTubes, tubeMass, tubeMass*2.2)
txt3= 'L-brackets x2 mass: %g [kg]l, %g [lbl\n';
fprintf (txt3,bracketMass,bracketMass*2.2)
txtd4= 'Fluid mass: %g [kgl, %g [lb]\n';
fprintf (txt4, fluidMass, fluidMass*2.2)
txt5= 'Cu tubing + valves x3: %g [kg], %g [1lb]l\n';
fprintf (txt5,circuitMass,circuitMass*2.2)
txt6= 'Total system mass: %g [kg], %g [lb]l\n';
fprintf (txt6, totalMass, totalMass*2.2)

case 'uncoupled'
error (' INCOMPLETE")

case 'pure'
error ("INCOMPLETE ")

case 'coupled tunable'
innerRadius= P.Tube.innerRadius;
outerRadius= innerRadius + P.Tube.thickness;
tubelLength= P.Tube.length;

switch tubeType
case 'F2MC'
% Define F2MC density:
laminateDensity= 1014; % Density of Reoflex 200 [kg/m"3]
fiberDensity= 1740; % Density of carbon fiber [kg/m"3]
tubeDensity= 0.5*laminateDensity + 0.5*fiberDensity;
% Compute F2MC tube volume:
tubeVolume= pi* (outerRadius.”2-innerRadius.”"2) .*tubelength;
tubeMass= 2*dot (tubeVolume, numTubePairs) *tubeDensity;
case 'McKibben'
% Estimate of mass based on measurements for a 4" tube:
measF2MCmass= 0.029/6.5; % [kg/in]
lengthF2MC= tubelength/0.0254 + 2;
tubeMass= nTubes*measF2MCmass*lengthF2MC;
end

% Compute F2MC fluid mass [kg]:

fluidvolume= tubelength*pi.*innerRadius.”"2;

tubeFluidMass= 2*dot (fluidVolume, numTubePairs)*fluidDensity;
% Compute inertia track fluid mass [kg]:

rpl= P.Tube.portRadiusl;

lpl= P.Tube.portLengthl;

rp2= P.Tube.portRadius2;

lp2= P.Tube.portLength?2;

tracklFluidMass= fluidDensity*lpl*pi*rpl~2;

track2FluidMass= fluidDensity*lp2*pi*rp2°2;

% Compute inertia track mass [kg]:

tCu= (3/8-0.277)/2; % Based on 0.277" Cu tubing from McMaster-Carr
AlCu= pi* ((rpl+tCu*0.0254)"2 - rpl™2); % [m"2]

A2Cu= pi* ((rp2+tCu*0.0254)"2 - rp272); % [m"2]

rhoCu= 8960; % [kg/m"3]

trackMass= (A1Cu+A2Cu) *rhoCu;

valveMass= 0.1075;

circuitMass= trackMass + 3*valveMass;

% Total fluid mass [kg]:

fluidMass= tracklFluidMass + track2FluidMass + tubeFluidMass;
% End fitting mass [kg]:
rodMass= 2*nTubes*0.17; % Estimated 157g, 170 is more conservative

% L-bracket mass [kg]:

bracketMass= 2*(0.9/2.2);

% Estimated total mass [kg]:

totalMass= rodMass+tubeMass+bracketMass*0+fluidMass+circuitMass;

% Print results:
txtl= 'End fittings + nuts + washers+barbs: %g [kgl, %g [1lb]l\n';
fprintf (txtl, rodMass, rodMass*2.2)
txt2= 'F2MC tubes x%g mass: %g [kg], %g [1lb]l\n';
fprintf (txt2,nTubes, tubeMass, tubeMass*2.2)
txt3= 'L-brackets x2 mass: %g [kg], %g [lb]\n';
fprintf (txt3,bracketMass, bracketMass*2.2)
txtd= 'Fluid mass: %g [kg], %g [lb]\n';
fprintf (txt4, fluidMass, fluidMass*2.2)
txt5= 'Cu tubing + valves x3: %g [kg], %g [lb]\n';
fprintf (txt5,circuitMass,circuitMass*2.2)
txt6= 'Total system mass: %g [kg], %$g [lb]\n';
fprintf (txt6,totalMass, totalMass*2.2)

end

systemMass= totalMass;

end

% Compute Tube Matrices

function [A,B,C,D,P]= computeTubeMatrices (P, f, tubeTypeNum, freqInd)
computeTubeMatrices.m

Function computing state space system matrices of an F2MC tube or a
McKibben muscle.

INPUT 1: P - Struct containing all passing parameters.

o o0 oo

o

% INPUT 2: f - Frequency [Hz].

% INPUT 3: tubeTypeNum - Index specifying tube type number.

% INPUT 4: freqlInd - Denotes the index of the frequency vector.
% OUTPUT 1: [A B C D] - State space representation of system.

% OUTPUT 2: P - Struct containing all passing parameters.

o [
5

)

% Unpack variables:

config= P.Simulation.config;
tubeType= P.Simulation.tubeType;
scaleTB= P.Simulation.scaleTB;

% Initialize storage variables:
tubeConst= cell (4, length (P.Tube.numTubePairs)) ;

% Extract tube properties:
Lt= P.Tube.length (tubeTypeNum) ;
switch config
case {'coupled', 'uncoupled'}
I0= P.Tube.inertance (tubeTypeNumn) ;
RO= P.Tube.resistance (tubeTypeNum) ;
R orf= P.Tube.orificeResistance (tubeTypeNum) ;
case 'coupled tunable'
Rl orf= P.Tube.orificeResistancel (tubeTypeNum) ;
R2 orf= P.Tube.orificeResistance2 (tubeTypeNum) ;
end

170

171

% Compute inertance, resistance:
if (£<0)
% Use averaged inertance, resistance:
switch config
case {'coupled',6 'uncoupled'}
RO= P.Tube.resistance(1l);
Rf avg= P.Tube.Rf avg;
R avg= (RO+P.Tube.orificeResistance (tubeTypeNum)) *Rf avg;
P.Tube.R avg= R avg;
R= P.Tube.R avg;
I= P.Tube.I avg;
case 'coupled tunable'
Rl= P.Tube.Rl_avg + Rl_orf;
Il= P.Tube.Il avg;

R2= P.Tube.R2 avg + R2 orf;
I2= P.Tube.I2Z2 avg;

end

else
% Adjust inertance and resistance based on frequency:
switch config
case {'coupled', 'uncoupled'}

[Rf,alph]= computeResistance (P, f, tubeTypeNum) ;
[If,~]= computelnertance (alph);

I= IO0O*If;
R= RO*Rf + R_orf;
case 'coupled tunable'
error ('incomplete')
end
end
% Compute F2MC tube transfer function:
switch tubeType
case 'F2MC'
switch config
case 'coupled'
% Compute F2MC tube variables
Amatrix i= computeComplianceMatrix (P, tubeTypeNum) ;

IR= P.Tube.innerRadius;
IR= IR (tubeTypeNum) ;

OR= P.Tube.outerRadius;
OR= OR (tubeTypeNum) ;

coef= tubeCoefficients (IR,OR,Amatrix i);

Sg= -P.Tube.initialVolume (tubeTypeNum) * (coef (1) +2*coef (4));

Tg= -P.Tube.initialVolume (tubeTypeNum) *. ..
(1/P.Tube.fluidModulus (tubeTypeNum) +coef (2) +2*coef (5)) ;

Phi 1= coef(1);
Phi 2= coef (2);

.Tube.phil (tubeTypeNum)= Phi 1;
.Tube.phi2 (tubeTypeNum)= Phi 2;
.Tube.Sqg (tubeTypeNum)= Sqg;
.Tube.Tq (tubeTypeNum)= Tqg;

o\

Axial force scale factor:

172

numPairs= P.Tube.numTubePairs;
numTubesTotal= numPairs*2;
P.Tube.numTubes= numTubesTotal;

% Define the following to simplify the equations of motion:
AQ0= pi*IR"2;
P.Tube.A0 (tubeTypeNum)= AQ;
kl= Phi 2*Sg-Phi 1*Tqg;
DO= 2*Phi 1/kl1;
D1= R;
D2= I;
NO= -2/ (Lt*kl);
Nl= R* (Sq*A0+Tq)/ (Lt*kl);
N2= I*(Sq*A0+Tq)/ (Lt*kl);

case 'uncoupled'
error ('INCOMPLETE")

case 'pure'
error ('INCOMPLETE")

end
case 'McKibben'
switch config

case {'coupled', 'coupled tunable'}
% Compute McKibben tube variables:
[C1,C2,C3]= mcKibbenTubeConstants (P) ;

% Convert variables to SI units:
Cl= C1*175.2684;
C2= C2*0.0254"2;
C3= C3*0.0254"2;
% Assign C3, C4 based on empirical data:
switch P.Tube.bladderType
case 'piston'
% Comparison against 1/32 soft bladder

Cl= 0;
C2= pi*P.Tube.innerRadius”2;
C3= -C2;

C4= 0.15*2*5.45e-13;
case 'unobtainium'
% The near-ideal damper bladder:
3= -1.64e-3; % Unobtainium
4= 0.15*2*%5.45e-13; % Unobtainium
case '1/32 soft rubber'
C3= -1.64e-3;
switch scaleTB
case 'small'
C4= 2*5.45e-13; % Measured 2/11/2015
otherwise
C4= (Lt/(6*0.0254))*5.45e-13;

C
C

end
case '1/16 soft rubber'
C3= -1.62e-3; % 1/16 soft rubber
C4= 2*10.55e-13; % 1/16 soft rubber
case 'l/8 soft rubber'
C3= C3*0.0254"2;
C4= 25.5e-13;
case 'l1/16 durable rubber'
C3= -1.28e-3; % 1/16 durable rubber
C4= 7.89e-13; % 1/16 durable rubber
case 'l/1l6 soft PVC'
C3= -1.22e-3; % 1/16 soft PVC

Q

173

C4= 5.31e-13; % 1/16 soft PVC
case '1/16 hard PV

C3= -0.23e-3; % 1/16 hard PVC

C4= 2.81e-13; % 1/16 hard PVC
otherwise

error ('Select a bladder type.\n\n'")

@]

end

% Store tube constants for the tubeTypeNum-th tube:
tubeConst{l, tubeTypeNum, fregqInd}= C1l;
tubeConst {2, tubeTypeNum, fregInd}= C2;
tubeConst {3, tubeTypeNum, freqInd}= C3;

tubeConst{4, tubeTypeNum, freqInd}= C4;
P.Tube.tubeConst= tubeConst;

% Axial force scale factor:

numPairs= P.Tube.numTubePairs;

numTubesTotal= numPairs*2;

P.Tube.numTubes= numTubesTotal;

% Define the following to simplify the equations of motion:
gam= C1-C2*C3/C4;

switch config
case 'coupled'
DO= 2/ (C4*numPairs) ;

D1= R;
D2= I;
NO= DO*C1;
Nl= gam*R;
N2= gam*I;

case 'coupled tunable'
DO= 2* (R1+R2)/ (C4*numPairs) ;
Dl= R1*R2+2* (I1+4I2)/ (C4*numPairs);
D2= I1*R2+I2*R1;
D3= I1*I2;
NO= DO*C1;
N1= gam*R1*R2 + 2*Cl* (I1+I2)/ (C4*numPairs) ;
N2= gam* (I1*R2+I2*R1);
N3= gam*I1*I2;
nd
Note that the above assumes:
1) 2p= IQdot + RQ
2) cl*x + c2*p= Ft
3) -c3*xdot - cd*pdot= Q
case 'uncoupled'
error ('INCOMPLETE")

do (D

o oo

o

end
otherwise
error ('Choose tube type.\n'")
end
% Inertance tuning estimate:
switch scaleTB
case '"full'
f target= [6 6.00218 6.03];
case 'OH-58"
f target= [5.15 5.16 5.17];
case 'small'
f target= [12.33 12.3624 12.38];
end

174

oo

Trigger the inertance tuning estimate at resonance. Throw a warning if
the estimator is run more than once:

inertanceYesNo= P.Simulation.inertanceYesNo;

inertEst= P.Simulation.inertEst;

o\

if (f>=f target(l) && f<=f target(3) && inertanceYesNo==0 && inertEst || 1)
% Compute inertance tuning estimate:

w target= 2*pi*f target(2);

If= P.Tube.If_avE;

I0 target= inertanceEstimator (P, tubeTypeNum, freqInd,w target)/If;

fprintf ('Inertance tuning estimate: %g\n\n',I0 target)

o\

Store index of the resonance estimate:

.f targetNeighbor= f;

.Frequency. fregInd= freqlnd;
P.Simulation.inertanceYesNo= 1;

elseif (f>=f target(l) && f<=f target(3) && inertanceYesNo==1 && inertEst)
error ('Inertance estimator triggered twice. \n\n')

end

U o

o

Convert transfer function into state space (note that the realization is
important for troubleshooting purposes, though tf2ss.m can be used):
switch config

case {'coupled', 'uncoupled'}

oo

A= [-D1/D2 -D0/D2;1 0];

B= [1/D2 0]"';

C= [N1-N2*D1/D2 NO-N2*D0/D2];
D= N2/D2;

case 'coupled tunable'
A= [-D2/D3 -D1/D3 -DO/D3; 1 0 0 ; 0 1 0];
B= [1/D3 0 0]1';
C= [N2-D2*N3/D3 N1-D1*N3/D3 NO-DO*N3/D3];
D= N3/D3;

)

% Compute Beam-Tube Matrices

function [A,B,C,D,P]= computeBeamTubeMatrices (P, f, freqInd)
computeBeamTubeMatrices.m

Function computing state space system matrices of a fluidlastic
helicopter tailboom.

o0 oo

o\

% INPUT 1: P - Struct containing all passing parameters.
% INPUT 2: freqglInd - Denotes the index of the frequency vector.
% OUTPUT 1: [A B C D] - State space representation of system.

o\

OUTPUT 2: P - Struct containing all passing parameters.

o oo
o

Extract beam system matrices:
massMat= P.Beam.M v;
stiffMat= P.Beam.K v;
dampMat= P.Beam.C v;

EI 0= P.EI O;
[N,~]= size(massMat) ;

config= P.Simulation.config;
switch config
case {'coupled',6 'uncoupled'}
m= 2;
case 'coupled tunable'
m= 3;

end

% Unpack basis functions:

switch P.Simulation.scaleTB
case 'full'

dof= 0;
case 'OH-58"
dof= 0;

case 'small'
dof= N-P.Simulation.nDimensions;
end

psi L= [P.Basis.psi L; zeros(dof,1)];

psi Out= [P.Basis.psi Out; zeros(dof,1)];

psi O doublePrime= [P.Basis.psi O doublePrime; zeros(dof,1)];
psi 0 triplePrime= [P.Basis.psi 0 triplePrime; zeros(dof,1)];
dtube= [P.Basis.d21*P.Tube.length; zeros(dof,1)];

d21Psi2lp= [P.Basis.d21Psi2lp; zeros(dof,1)];

% Calculate the number of different F2MC tube types:
nTubeTypes= length (P.Tube.numTubePairs) ;

oo

Combine tailboom and F2MC systems into single state-space model.
Initialize varaibles:
beta a Sum= cell (1,nTubeTypes) ;

o

% Initialize beam-tube matrices:
N eff= 2*N+m*nTubeTypes;

A= zeros (N eff,N eff);

B= zeros (N eff,1);

C= zeros(1,N eff);

D= 0;

tubeMatrices= cell (4,nTubeTypes) ;

for i=1:nTubeTypes

This loop will iterate through each tube and perform the following:
First, it will compute F2MC tube properties and package them into
variables alpha, beta, and gamma to simplify notation. Then, it will
populate the beam-tube A-matrix as needed.

o o0 oo

o

o

Compute tube state space representation:

jj= freqglnd;

[Atube i,Btube i,Ctube i,Dtube i,P]= computeTubeMatrices(P,f,1i,3]);
tubeMatrices{1l,1i}= Atube i;

tubeMatrices{2,1i}= Btube i;

tubeMatrices{3,1i}= Ctube i;

tubeMatrices{4,1i}= Dtube i;

% To simplify notation, we define the following variables: beta, alpha,
% and gamma. Compute beta-partial sum:

d21= [P.Basis.d21(:,1i); zeros(dof,1)];

dtube= d21*P.Tube.length;

numPairs= P.Tube.numTubePairs;

beta a Sum{i}= 2*numPairs*Dtube i* (d21Psi2lp) *dtube’;

% Compute beta 1i:

beta i= -2*numPairs* (massMat”-1)*d21Psi2lp*Ctube i;

% Compute alpha i:

alpha i= Btube i*dtube';

175

176

% Compute gamma 1i:
gamma_i= Atube i;

Populate A-matrix as needed
beta i:
(N+1:2*N, 2*N+m* (i-1)+1:2*N+m*i)= beta i;

oo oo

oo

alpha i:
A(2*N+m* (1-1) +1:2*N+m*i, 1:N)= alpha i;

% gamma_ 1:
A(2*N+m* (1-1) +1:2*N+m*i, 2*N+m* (i-1)+1:2*N+m*i)= gamma 1i;

if (P.TFmode>=4 && P.TFmode<=8)
% Pack up cell arrays for pressure, force, and flow calculations:

oo

Pressure:
P.Tube.tubeMatrices= tubeMatrices;
end
end

% Complete population of beam-tube matrices
Sum all the beta parts:
beta a Sum= sum(cat (3,beta a Sum{:}),3);

oo

% Populate the remainder of the beam-tube A-matrix:

A(1l:N,N+1:2*N)= eye (N);
A(N+1:2*N, N+1:2*N)= - (massMat”-1)*dampMat;
A(N+1:2*N, 1:N)= -(massMat”-1)* (beta a Sum + stiffMat);

% Compute B-matrix:
B(N+1:2*N)= (massMat”-1)*psi L;

switch P.TFmode
case 1
% Compute C-matrix (displacement at tip):
C(l:N)= psi Out';

case 2
% Compute C-matrix (moment at root):
C(1:N)= -EI O*psi 0 doublePrime’;
case 3
% Compute C-matrix (shear at root):
C(l:N)= -EI O*psi O triplePrime' -EI Op*psi 0 doublePrime';
case 4
% Compute C-matrix for tip force to pressure of jth tube.
j= 1;

if (nTubeTypes>1)
d21l= d21(:,1);
end

tubeConst= P.Tube.tubeConst;
tubeMatrices= P.Tube.tubeMatrices;

Cl= tubeConst{l,]j};

C2= tubeConst{2,3j};

dtube= [d21*P.Tube.length; zeros(dof,1)];
Ctube i= tubeMatrices{3,j};

Dtube i= tubeMatrices{4,]j};

C(1l:N)= (1/C2)*(Dtube_ i - C1)*dtube';
C(2* (N+3)-1:2*(N+j))= (1/C2)*Ctube i;

case 5
% Compute C-matrix for tip force to axial force of jth tube.
C(1:N)= Dtube i*dtube';
C(2*N+1:2*N+length (Ctube i))= Ctube 1i;

case 6

oo

Compute matrices for tip acceleration to pressure
of first tube:
error (' INCOMPLETE")
case 7
% Compute matrices for tip acceleration to axial force:
Ca= psi L'*A(N+1:2*N, :);
Da= psi L'* (massMat”-1)*psi L;

o\

A= A-B*Ca;
B= B/Da;

if (nTubeTypes>1)
d21= d21(:,1);
dtube= d21*P.Tube.length;
end
C(1:N)= Dtube i*dtube';
C(2*N+1:2*N+2)= Ctube 1i;
case 8
% Compute C-matrix for tip force to flow rate:
=1

’

.

if (nTubeTypes>1)

d21= d21(:,1);

dtube= d21*P.Tube.length;
else

dtube= [P.Basis.d21*P.Tube.length; zeros(dof,1)];
end
tubeConst= P.Tube.tubeConst;
tubeMatrices= P.Tube.tubeMatrices;
Cl= tubeConst{l,j};
C2= tubeConst{2,7};
C3= tubeConst{3,3j};
C4= tubeConst{4,]};

Ctube i= tubeMatrices{3,j};
Dtube i= tubeMatrices{4,j};

Cp(l:N)= (1/C2)*(Dtube_i - Cl) *dtube';
Cp(2* (N+3)-1:2*(N+j))= (1/C2)*Ctube_1i;

C= -C4*Cp*A;
C(l:2*N)= C(1:2*N) + [zeros(l,N) -C3*dtube'];
D= -C4*Cp*B;
case 9
% C-matrix for tip force to tip acceleration [m-s"-2]:
C= psi Out'*A(N+1:2*N,:);
D= psi Out'* (massMat”-1)*psi L;
otherwise
error ('Choose a transfer function.')

% Compute Compliance Matrix (Bin Zhu)

function complianceMatrix= computeComplianceMatrix (P, 1)

% Bin Zhu's code for computing F2MC tube compliance matrix.
Modified by Kentaro Miura.

o\

177

o o0 oo o

o

o

Ell= P.Tube.E11(i); E22= P.Tube.E22(i); vl12= P.Tube.v12(i);
v23= P.Tube.v23(1); Gl2= P.Tube.Gl2(1i); G23= P.Tube.G23(1i);

angle= P.Tube.fiberAngle (i) ;

FiberAngle=[angle, -angle, -angle, +angle];

PlyNum=length (FiberAngle) ;

Layer Thickness=[1,1,1,1];

Total Thickness=sum(Layer Thickness);

V=((1+v23)* (1-v23-2*v12"2*E22/E11l)) ;

cll=(1-v2372)*E11l/V;

cl2=v12* (1+v23) *E22/V;

cl3=cl2;

c23=(v23+v127"2*E22/E11) *E22/V;

c22=(1-v12"2*E22/E11) *E22/V;

c33=c22;

c44=G23;

c55=G12;

c66=c55;

C0=[cll,c12,¢c13,0,0,0;
cl2,c22,¢c23,0,0,0;
cl13,¢c23,¢33,0,0,0
0,0,0,c44,0,0;

rYr

0,0,0,0,c55,0;
0,0,0,0,0,c66];
a=0;b=0;c=0;
for k=1:PlyNum

theta=FiberAngle (k) *pi/180;
vk=Layer Thickness (k) /Total Thickness;
m=cos (theta) ;
n=sin (theta);
T s=[m*2, n*2, 0,0,0,2*m*n;
n*2,m"2,0,0,0,-2*m*n;
0,0,1,0,0,0;
0,0,0,m,-n,0;
0,0,0,n,m,0;
-m*n,m*n,0,0,0, (m*2-n"2)1;
T e=[m*2,n"2,0,0,0
n*2,m*2,0,0,0,-m*n;
0,0,1,0,0,0;
0,0,0,m,-n,0;
0,0,0,n,m,0;
-2*m*n,2*m*n,0,0,0, (m*2-n"2)];
C=T_s\CO*T_e;
delta k=C(4,4)*C(5,5)-(C(4,5))"2;
a=a+vk*C(4,4)/delta_k;
b=b+vk*C(5,5) /delta k;
c=c+vk*C(4,5)/delta_k;
end % Just for calculation of delta
delta=a*b-c"2;
% The following is for the calculation of Cij
C bar=[0,0,0,0,0,0;
0,0,0,0,0,0;
0,0,0,0,0,0;

o)

INPUT 1: P - Struct containing all passing parameters.
INPUT 2: 1 - Index variable denoting i-th F2MC tube.

OUTPUT 1: complianceMatrix - F2MC tube compliance matrix.

,M*n; % w.r.t. engineering strain

178

179

4 4 ’ 4 ’ 4

rYrYvrVYr Yy

o O O
o O O
o O O
o O O
o O O
o O O

,0,0,0,0,0];

for k=1:PlyNum
theta=FiberAngle (k) *pi/180;
vk:Layer_Thickness(k)/Total_Thickness;
m=cos (theta) ;
n=sin (theta);
T s=[m*2, n*2, 0,0,0,2*m*n;

n~2,m"2,0,0,0,-2*m*n;
0,0,1,0,0,0;
0,0,0,m,-n,0;
0,0,0,n,m,0;
-m*n,m*n,0,0,0, (m*"2-n"2)1];
T e=[m"2,n 2 0,0,0,m*n;

14 14 14
n*2,m"2,0,0,0,-m*n;
O 0,0;

ml
,n,m,O,
2*m*n, 2*m*n,0,0,0, (m*"2-n"2)];
C=T_s\CO*T_e;

0,0,1, ;
0,0,0, ;07
0,0,0
—D* m*

delta k=C(4,4)*C(5,5)-(C(4,5))"2;

C bar(1,1)=C bar(l,1)+vk*C(1,1);

C bar(1,2)=C bar(1l,2)+vk*C(1,2);

C bar(1,3)=C bar(l,3)+vk*C(1,3);

C bar(1,6)=C bar(l,6)+vk*C(1,6);

C bar(2,1)=C bar(1,2);

C bar(2,2)=C bar(2,2)+vk*C(2,2);

C bar(2,3)=C bar(2,3)+vk*C(2,3);

C bar(2,6)=C bar(2,6)+vk*C(2,6);

C bar(3,1)=C bar(1,3);

C bar(3,2)=C bar(2,3);

C bar(3,3)=C bar(3,3)+vk*C(3,3);

C bar(3,6)=C bar(3,6)+vk*C(3,6);

C bar(6,1)=C bar(1,6);

C bar(6,2)=C bar(2,6);

C bar(6,3)=C bar(3,6);

C bar(6,6)=C bar(6,6)+vk*C(6,6);

C bar(4,4)=C bar (4,4)+vk*C (4)/delta k/delta;

C bar(4,5)=C_bar(4,5)+vk*C(4,5)/delta k/delta;

C bar(5,4)=C bar(4,5);

C_bar(5,5)=C_bar(5,5) +vk*C 5) /delta_k/delta;
end
% C bar;

all=s bar(3,3)
al2=S bar (2, 3)
al3=s bar (1, 3)
az22=S bar(2,2)
a23=S bar(1,2);
a33=S _bar(1,1)
a66=S bar (4, 4)
a55=S bar (5,5)
ad44=S bar (6, 6)

complianceMatrix = [all al2 al3 O 0 0;
al2 a22 a23 0 0 0;
al3 a23 a33 o0 0 0;
0 0 0 a44
0 0 0 0 ab55 0y

0 0 0 0 0 a66];

C
oe

% Compute Tube Coefficients (Bin Zhu)

function tubeCoeff= tubeCoefficients(a,b,aMatrix)

Bin Zhu's subroutine for generating F2MC tube equation coefficients.
Modified by Kentaro Miura.

o o0 o°

o

INPUT 1: a - F2MC tube inner radius [m].
INPUT 2: Db - F2MC tube outer radius [m].
INPUT 3: aMatrix - F2MC tube compliance matrix.

o° o oo

oe

OUTPUT 1: tubeCoeff - Vector of F2MC tube coefficients.

all= aMatrix(1l,1)
al2= aMatrix(1,2)
al3= aMatrix (1, 3)
a22= aMatrix(2,2);
a23= aMatrix (2, 3)
a33= aMatrix (3, 3)
ad44= aMatrix (4,4)

betall = all-al3”2/a33;
beta22 = a22-a2372/a33;
betadd = adi4;

betald = 0; beta24 = 0;

k= sqgrt (betall/beta22);
kai= (al3-a23)*betadd/ (beta22*betadd-beta24”2-betall*betadd+betald™?2);
T= pi* (power (b,2)-power (a,2))-2*pi*kai/a33* ((power (b,2)-power(a,2))...
/2* (al3+a23) - (power (b, k+1) -power (a, k+1)) * (al3+k*a23) /...
(power (10*b, 2*k) -power (10*a, 2*k))/ (k+1) *10" (2*k) * (power (b, k+1) ...

-power (a, k+1l)) - (power (b, k-1) -power (a, k-1)) *power (a, 2) *power (b, 2) ...
* (al3-k*a23) / (power (10*b, 2*k) -power (10*a, 2*k)) / (k=1) *10" (2*k) *. ..
(power (b, k-1) -power (a, k-1)));

Coef srl= [kai/T; -kai* (power (b, k+l)-power (a,k+1))/ (power (10*b,2%k)-...
power (10*a,2*k))*10" (2*k) /T; -kai* (power (b, k-1)-power (a,k-1)) ...
/ (power (10*b, 2*k) -power (10*a, 2*k)) *10" (2*k) /...
T*power (a, k+1) *power (b, k+1)];

Coef sql= [kai/T; -kai* (power (b, k+l)-power (a,k+1))*k/ (power (10*b,2%k) ...
-power (10*a,2*k))*10" (2*k) /T; kai* (power (b, k-1)-power(a,k-1))...
*k/ (power (10*b, 2*k) —-power (10*a, 2*k)) *10" (2*k) /T*power (a, k+1) ...
*power (b, k+1)1;

Coef szl= -al3/a33*Coef srl - a23/a33*Coef sgl + [1/T; 0; 0];

Coef sr2= [0; power (a, k+1) / (power (10*b, 2*k) —-power (10*a, 2*k)) *10" (2*k) ; ...
-power (b, k-1) / (power (10*b, 2*k) -power (10*a, 2*k)) *10" (2*k) . ..
*power (a, k+1l) *power (b, k+1)];
Coef sr2c= kai*[1l; - (power (b,k+1)-power (a,k+l))/ (power (10*b,2*%k)~-...
power (10*a,2*k))*10" (2*k); - (power (b,k-1)-power(a,k-1))/...
(power (10*b, 2*k) -power (10*a, 2*k)) *10" (2*k) *power (a, k+1) *power (b, k+1)];
Coef sqg2= [0; power (a, k+1) *k/ (power (10*b, 2*k) -power (10*a, 2*k)) *10" (2*k) ; ...
power (b, k-1) *k/ (power (10*b, 2*k) —power (10*a,2*k)) *10~ (2*k) *. ..
power (a, k+1) *power (b, k+1) 1;
Coef sqg2c= kai*[1l; - (power (b,k+1)-power(a,k+l))*k/ (power (10*b,2*k)~...
power (10*a,2*k))*10" (2*k); (power (b,k-1)-power (a,k-1))*k/...
(power (10*b, 2*k) -power (10*a, 2*k)) *10" (2*k) *power (a, k+1) *power (b, k+1)];
Coef sz2= -al3/a33*Coef sr2 - a23/a33*Coef sq2;

180

181

Coef sz2c= -al3/a33*Coef sr2c - a23/a33*Coef sqg2c + [1; 0; 0];

FunPl= @ (x)Coef sz2(1l)*x + Coef sz2(2)*x.”"k + Coef s2z2(3)*x."-k;
Pl= integral (FunPl,a,b) *2*pi;

FunP2= @ (x)Coef sz2c(l)*x + Coef sz2c(2)*x.”k + Coef sz2c(3)*x."-k;
P2= integral (FunP2,a,b) *2*pi;

Coef sr2= Coef sr2 - P1/P2*Coef sr2c;
Coef sqg2= Coef sqg2 - P1/P2*Coef sqg2c;
Coef sz2= -al3/a33*Coef sr2 - a23/a33*Coef sq2 + [-P1/P2; 0; 0];

Coef sr3= [0; -power (b,k+l)/ (power (10*b,2*k) -power (10*a,2*k))*10" (2*k) ;
power (a, k-1) / (power (10*b, 2*k) -power (10*a, 2*k)) *...
10" (2*k) *power (a, k+1) *power (b, k+1)];
Coef sr3c= kai*[1; - (power (b, k+1) -power (a, k+1)) /...
(power (10*b, 2*k) —-power (10*a, 2*k)) *10" (2*k) ; ...
- (power (b, k-1) —-power (a,k-1)) /...
(power (10*b, 2*k) —-power (10*a, 2*k)) *10" (2*k) *power (a, k+1) *power (b, k+1)];
Coef sqg3= [0; -power (b, k+1) *k/ (power (10*b, 2*k) —-power (10*a, 2*k)) *...
10~ (2*k); -power (a,k-1)*k/ (power (10*b,2*k) -power (10*a,2*k))*...
10" (2*k) *power (a, k+1) *power (b, k+1)];
Coef sq3c= kai*[1; - (power (b, k+1) -power (a, k+1)) *k/ (power (10*b, 2*k) ...
-power (10*a,2*k)) *10" (2*k); (power (b,k-1)-power(a,k-1))*k...
/ (power (10*b, 2*k) -power (10*a, 2*k)) *10" (2*k) *power (a, k+1) *power (b, k+1)];
Coef sz3= -al3/a33*Coef sr3 - a23/a33*Coef sq3;
Coef sz3c= -al3/a33*Coef sr3c - a23/a33*Coef sqg3c + [1; 0; 0];

FunQl= @ (x)Coef sz3(1)*x + Coef sz3(2)*x."k + Coef sz3(3)*x."-k;
Ql= integral (FunQl,a,b) *2*pi;

FunQ2= @ (x)Coef sz3c(l)*x + Coef sz3c(2)*x."k + Coef sz3c(3)*x."-k;
Q2= integral (FunQ2,a,b) *2*pi;

Coef sr3= Coef sr3 - Ql/QZ*Coef_sr3c;
Coef sq3= Coef_sqg3 - Q1/Q2*Coef sqg3c;
Coef sz3= -al3/a33*Coef sr3 - a23/a33*Coef sg3 + [-Q1/Q2; 0; 0];

Coef eql= al2*Coef srl
Coef eq2= al2*Coef sr2
Coef eq3= al2*Coef sr3
Coef ezl= al3*Coef srl
Coef ez2= al3*Coef sr2
Coef ez3= al3*Coef sr3

az2*Coef sql
az2*Coef sqg2
az2*Coef sqg3
az23*Coef sqgl
az3*Coef sqg2
az23*Coef sg3

a23*Coef szl;
a23*Coef sz2;
a23*Coef sz3;
a33*Coef szl;
a33*Coef sz2;
a33*Coef sz3;

+ 4+ + + o+

+
+
+
+
+
+

eqla= Coef eql(l)+Coef eql(2)*a”(k-1)+Coef eql(3)*a”(-k-1);
eqZ2a= Coef eqg2(l)+Coef eq2(2)*a” (k-1)+Coef eqg2(3)*a” (-k-1);
eqg3a= Coef eqg3(l)+Coef eq3(2)*a” (k-1)+Coef eg3(3)*a” (-k-1);

ezla= Coef ezl (l)+Coef ezl (2)*a”(k-1)+Coef ezl (3)*a"(-k-1);
ezZ2a= Coef ez2(1l)+Coef ez2(2)*a” (k-1)+Coef ez2(3)*a” (-k-1);
ez3a= Coef ez3(l)+Coef ez3(2)*a”(k-1)+Coef ez3(3)*a"(-k-1);

tubeCoeff= [ezla ez2a ez3a eqgla eg2a eqg3a];
end

% Compute Tube Coefficients (Lloyd Scarborough)

function [C1l,C2,C3]= mcKibbenTubeConstants (P)

Lloyd Scarborough's code for computing braid-sheathed F2MC tube equation
coefficients. Modified by Kentaro Miura.

o oo

oe

INPUT 1: P - Struct containing all passing parameters.

oo

oo

o\

OUTPUT 1:

o o d° o° o oP

oo

o\

[C1 C2 C3]
Cl [1lbf/in]
C2 [in"2]
C3 [in"2]

Unpack variables:

L= P.Tube.length/0.0254;

Ep= P.Tube.
Er= P.Tube.
rf= P.Tube.
nu= P.Tube.
ds= P.Tube.

E1l
E2
vl
v2
Gl

1*0.000145037738;
2*0.000145037738;

2/0.0254;
3;
2/0.0254;

m= P.Tube.G23;

Rio= P.Tube.innerRadius/0.0254;
Roo= P.Tube.outerRadius/0.0254;
alpha= P.Tube.fiberAngle*pi/180;

Ls= L/cos (alpha) ;

)

% Define simulation parameters:

delta= 11111115/16;
p_res= 0.01;
lambdal res= 0.001;

% Define operating fluid pressure
~op= P.Tube.operatingPressure;

o)

% Define operating axial load

rr
[e]

p= 0;

% Find lambdal op

p=p_op/
F=F

o

.McKibben.
.McKibben.
.McKibben.
.McKibben.
.McKibben.
.McKibben.
.McKibben.
.McKibben.
.McKibben.
.McKibben
.McKibben.
.McKibben.
.McKibben
.McKibben.

' tu v 'y ‘U ‘U ‘U U U U O U O O

f1= @(11) exprII dyn I(11,P);
options = optimset ('Display','off'");
lambdal op=fsolve (fl,1,options);

% Compute C3

ambdal op= lambdal op-lambdal res;

1
V tube b= pi

./_sin(alpha)

Rio= Rio;
Roo= Roo;

L= L;

alpha= alpha;
Er= Er;

nu= nu;

Ep= Ep;

ds= ds;

Ls= Ls;

.m= m;

rf= rf;
delta= delta;
.p= p;

F= F;

.* ((0.1lel - lambdal op
.* (Rio + Roo) ./ 0.2el - (Roo - Rio)

- F2MC tube coefficients.

Initial guesses are specified as the second argument
options are specified in the wvariable:

options

Refer to Scarborough

.* cos (alpha)

of fsolve.m,

Pack variables into struct P for linearization subroutines:

[62]

and the

N2y (1/2) ...
./ lambdal op .*...

182

(0.1el - lambdal op .~ 2 .* cos(alpha) .” 2) .”~ (-0.lel ./ 0.2el) .*...
sin(alpha) ./ 0.2el) .~ 2 .* lambdal op .* L;

lambdal op= lambdal op+2*lambdal res;

V_tube a= pi .* ((0.lel - lambdal op .” 2 .* cos(alpha) .” 2) .M (1/2) ...
./ sin(alpha) .* (Rio + Roo) ./ 0.2el - (Roo - Rio) ./ lambdal op...
.* (0.1lel - lambdal op ."~ 2 .* cos(alpha) .”~ 2) .~ (-0.lel ./ 0.2el)...
.* sin(alpha) ./ 0.2el) .”~ 2 .* lambdal op .* L;

A3= (V_tube a-V _tube b)/(2*lambdal res);

C3= A3/L;

% Reset lambdal op:
lambdal op= lambdal op-lambdal res;

% Compute Cl —————————— - %
p= p_op;

lambdal= lambdal op-lambdal res;

P.McKibben.p= p;

P.McKibben.lambdal= lambdal;

f2= @(12) exprII dyn II(12,P);
Ftube b= fsolve(f2,20,options);

lambdal= lambdal op+2*lambdal res;
P.McKibben.lambdal= lambdal;

f2= @(12) exprII dyn II(12,P);
Ftube a= fsolve(f2,20,options);

Al= (Ftube_a—Ftube_b)/(2*lambdal_res);
Cl= Al/L;

% Reset lambdal op:

lambdal op= lambdal op-lambdal res;

% Compute C2 ———————————— - m %
lambdal= lambdal op;

p= p_op~p_res;

P.McKibben.p= p;

P.McKibben.lambdal= lambdal;

f2= @(12) exprII dyn II(12,P); % Refer to Scarborough [62]
Ftube b= fsolve(f2,20,options);

p= p_op+2*p res;
P.McKibben.p= p;
f2= @(12) exprII dyn II(12,P);
Ftube a= fsolve(f2,20,options);

C2= (Ftube_a-Ftube b)/(2*p res);
end

% Inertance tuning estimator

function I0 target= inertanceEstimator (P, tubeTypeNum, freqInd,w target)
Subroutine for estimating the inertance required to tune an absorber.
Uses a reduced-order model of the tailboom.

o\

oe

% INPUT 1: P - Data structure containing parameter values.

% INPUT 2: tubeTypeNum - Index specifying tube type number.

% INPUT 3: freglInd - Denotes the index of the frequency vector.
% INPUT 4: w_target - Target frequency [rad/s].

o\

o\

OUTPUT 1: 1I0 target - Target inertance [kg/m"4].

183

% Unpack variables:

dtube= P.Basis.d21*P.Tube.length;

d21Psi2lp= P.Basis.d21Psi2lp;

numPairs= P.Tube.numTubePairs;

np= numPairs;

Cl= P.Tube.tubeConst{1l, tubeTypeNum, freqInd};
C2= P.Tube.tubeConst{2, tubeTypeNum, freqInd};
C3= P.Tube.tubeConst{3, tubeTypeNum, freqInd};
C4= P.Tube.tubeConst{4, tubeTypeNum, freqInd};
gam= C1-C2*C3/C4;

d211= d21Psi2lp (1) ;

d212= d21Psi2lp(2);

d213= d21Psi2lp(3);

dtl= dtube (1l); dt2= dtube(2); dt3= dtube(3);
massMat= P.Beam.M v;

stiffMat= P.Beam.K v;

M1ll= massMat (1,1

)
M12= massMat (1,2);
M13= massMat (1,3);
M22= massMat (2,2);
M23= massMat (2, 3);
M33= massMat (3, 3);
kll= stiffMat(1,1);
k1l2= stiffMat(1,2);
k13= stiffMat (1, 3);
k22= stiffMat (2,2);
k23= stiffMat(2,3);
k33= stiffMat (3,3);

% Compute optimal parameters for sdof oscillator + absorber:
k0= -2*np*C2*C3*d211*dtl/C4;

ml= M11;

m2= - (np”2)*C2*C3*d211*dtl1*P.Tube.I avg;

mu= m2/ml;

zetfp= sqrt(3*mu/ (8-4*mu)) ;

np= numPairs;

Iffp= (2/(C4*np))*M11/ (kll+2*np*gam*d211*dtl)/P.Tube.If avg;
b2opt= 2*sqgrt (m2*k0) * (zetfp);

Ropt= -b2opt/ ((np”2)*C2*C3*d211*dtl);

Rffp= Ropt/P.Tube.Rf avg;

Ifsimple= (2/(C4*np))/((w_target)”2)/P.Tube.If avg;

% Print results:

fprintf ('Inertance estimate using simple tuning rule: $g \n',Ifsimple)
fprintf ('Inertance estimate using fixed points: %g \n',Iffp)

fprintf ('Resistance estimate using fixed points: %g \n\n',Rffp)

if (0)
% Authority test processing:
J= (stiffMat+2*np*Cl* (dtube*d21Psi2lp')')"-1;

pp= [0 30 40 60 80 100 120]1*6.89476; % Pressure vector
wL= -2*np*C2*P.Basis.psi Out'*J*d21Psi2lp*pp; % Displacement

figure

ppel= [0 30 40 60 80 100 120]1*6.89476; %Exp. pressure
wLel= 0.0001*[65 43 35 24 11 10 6]; % Exp. displ.

dc= wLel (1) ;

wLel= wLel-dc;

184

185

ppe2= [120 100 80 60 40 30 0]1*6.89476; %Exp. pressure

wLe2= 0.0001*[6 13 16 31 43 54 69]; % Exp. displ.

wLe2= wLe2-dc;

plot (pp,wL*1000,ppel,wlel, 'o-"',ppe2,wle2, "*-")

xlabel ('Pressure [kPa]l]')

ylabel ('Vertical Displacement [mm]"')

legend('Model Prediction', 'Loading Experiment', 'Unloading Experiment')
end

% Compute inertance estimate:

I0 target= 2.*C4.7(-2) .*numPairs.”(-1).*w _target.”(-2).* (k23.72.*MI11+...
k12.*k33.*M12+(-2) .*d212.*dt2.*gam.*k33.*M11l.*numPairs+...
2.*%d213.*dt3.*gam.*k1l2.*M12.*numPairs+...

(=2) .*d213.*dt2.*gam.*k13.*M12.*numPairs+2.*d211.*
dt2.*gam.*k33.*M12.*numPairs+(-2) .*d212.*dt3.*gam.*k1l2.*M13.*
numPairs+2.*d212.*dt2.*gam.*k13.*M13.*numPairs+(-1) .*k33.*M12."2.*
w_target.”2+k33.*M11.*M22.*w_target.”2+...

(-1) .*k13.*M13.*M22.*w_target.”2+kl13.*M12.*M23.*
w_target.”2+kl2.*M13.*M23.*w_target.”2+...

(-1) .*k12.*M12.*M33.*w_target.”2+(-2).*d213.*
dt3.*gam.*M12.”2.*numPairs.*w_target.”2+...
2.*d213.*dt2.*gam.*M12.*M13.*

numPairs.*w target.”2+...
2.*d212.*dt3.*gam.*M12.*M13.*numPairs.*w target.”2+(-2).*
d212.*dt2.*gam.*M13."2.*numPairs.*w target.”2+...
2.*d213.*dt3.*gam.*M11.* ...

M22.*numPairs.*w target.”2+...

(-2) .*d211.*dt3.*gam.*M13.*M22.*numPairs.*
w_target.”2+(-2).*d213.*dt2.*gam.*M11.*M23.*numPairs.*w target.”2+...
(-2).*d212.*dt3.*gam.*M11.*M23.*numPairs.*w target.”2+...
2.*d211.*dt3.*gam.*M12.*M23.*numPairs.*w_target.”2+...
2.*d211.*dt2.*gam.*M13.*M23.*numPairs.*w target.”2+2.%
d212.*dt2.*gam.*M11.*M33.*numPairs.*w target.”2+...

(=2) .*d211.*dt2.*gam.*
M12.*M33.*numPairs.*w_target.”2+M13."2.*M22.*w_target."4+...

(=2) .*M12.*M13.*M23.*

w_target.”4+M11.*M23.%2.*w target.”4+M12.72.*M33.*w target.”4+...
(=1) .*M11.*M22.*M33.*

w_target.”4+(-1).*k23.* (k13.*M12+k12.*M13+...

(-2) .*d213.*dt2.*gam.*M11.*

numPairs+ (-2) .*d212.*dt3.*gam.*M11.*numPairs+2.*d211.*dt3.*gam. *
M12.*numPairs+2.*d211.*dt2.*gam.*M13.*numPairs+(-2) .*M12.*M13.*
w_target.”2+2.*M11.*M23.*w_target.”2)+k22.* ((-1).*k33.*M11+k13.*M13+...
(=2) .*d213.~*
dt3.*gam.*M11l.*numPairs+2.*d211.*dt3.*gam.*M13.*numPairs+(-1) .*
M13.72.*w_target.”2+...
M11.*M33.*w_target.”2)).”(-1).*(C4.*(k23.72.*M11+k12.*k33.*
M12+(-2) .*d212.*dt2.*gam.*k33.*M11.*numPairs+2.*d213.*dt3.*gam.*
k12.*M12.*numPairs+ (-2) .*d213.*dt2.*gam.*k13.*M12.*numPairs+2.*
d211.*dt2.*gam.*k33.*M12.*numPairs+(-2) .*d212.*dt3.*gam.*kl2.*
M13.*numPairs+2.*d212.*dt2.*gam.*k13.*M13.*numPairs+(-1) .*k33.*
M12.72.*w_target.”2+k33.*M11.*M22.*w_target."2+...

(-1) .*k13.*M13.*M22.*w_target.”2+kl13.*
M12.*M23.*w_target.”2+kl2.*M13.*M23.*w_target.”2+...

(-1) .*k12.*M12.*M33.*w_target.”2+(-2)
.*d213.*dt3.*gam.*M12."2.*numPairs.*w_target.”2+...
2.*d213.*dt2.*gam.*M12.*

M13.*numPairs.*w target.”2+...
2.*d212.*dt3.*gam.*M12.*M13.*numPairs.*w target.”2+(
-2).*d212.*dt2.*gam.*M13."2.*numPairs.*w_target.”2+...
2.*%d213.*dt3.*gam. *

M11.*M22.*numPairs.*w_target.”2+(-2).*d211.*dt3.*gam.*M13.*M22.*
numPairs.*w target.”2+...
(-2) .*d213.*dt2.*gam.*M11.*M23.*numPairs.*w target.”2+(-2)
.*d212.*dt3.*gam.*M11.*M23.*numPairs.*w_ target.”2+...
2.*d211.*dt3.*gam.* .
M12.*M23.*numPairs.*w_ target.”"2+.
2.*d211.*dt2.*gam.*M13.*M23. *numPalrs *
w_target.”2+2.*d212.*dt2.*gam.*M11.*M33. *numPalrs *w_target.”2+...
(=2) .*d211.*dt2.*
gam.*M12.*M33.*numPairs.*w target.”2+M13."2.*M22.*w target.”4+
(=2) .*M12.*M13.~*
M23.*w target.”4+M11.*M23."2.*w target.”4+M12.72.*M33.*w_target.”4+...
(=1) .*M11.*M22.*
M33.*w target.”4+(-1) .*k23.*(k13.*M12+kl2.*M13+...
(=2) .*d213.*dt2.*gam. *
M11l.*numPairs+ (-2).*d212.*dt3.*gam.*M11.*numPairs+2.*d211.*dt3.*
gam.*M12.*numPairs+2.*d211.*dt2.*gam.*M13.*numPairs+ (-2) .*M12.*
M13.*w target.”2+2.*M11.*M23.*w target.”"2)+
k22 .% ((-1) .*k33.*M11+k13.*M13+(-2) .*
d213.*dt3.*gam.*M11l.*numPairs+2.*d211.*dt3.*gam.*M13.*numPairs+ (
-1) .*M13.72.*w_target.”2+M11.*M33.*w_ target.”2))+
(-2) .*C2.*C3.*numPairs.* (.
d213.72.*% (k22 .*M11+(-1) .*k12.*M12+. ..
(M12.72+(-1) .*M11.*M22) .*w_target.”2)+ .
d213.*(d212.* ((-2) .*k23.*M11+k13.*M12+k12.*M13+ (-2) .*M12.*M13.*
w_target.”2+2.*M11.*M23.*w target.”2)+
d211.* (k23.*M12+ (-1) .*k22.*M13+ (M13.*M22+ (
-1).*M12.*M23) .*w_target.”2))+
d212.*(d212.* (k33.*M11+(-1) .*k13.*MI13+(
M13.72+(-1) .*M11.*M33) .*w_target.”2)+
d211.*((-1) .*k33.*M12+k23.*M13+ ((-1)
. *MI3.*M23+4M12.*M33) .*w_target.”2))));

end

% Compute resistance factor
functlon [Rf,alph]= computeResistance (P, £, tubeTypeNum)
Computes resistance multiplier Rf as a function of fluid oscillation

o

% frequency.

% INPUT 1: P - Struct containing all passing parameters.
% INPUT 2 f - Frequency [Hz].

% INPUT 3: tubeTypeNum - Number identifying F2MC tube.

% OUTPUT 1: Rf - Resistance multiplier.

% OUTPUT 2 alph - Non-dimensional frequency parameter.

o
©

oo

Unpack variables:

config= P.Simulation.config;

mu= P.Tube.viscosity (tubeTypeNum) ;
rho= P.Tube.fluidDensity (tubeTypeNum) ;

nu= mu/rho;

switch config

case {'coupled', "uncoupled'}
r= P.Tube.portRadius (tubeTypeNum) ;
alph= r*sqgrt (2*pi*f/nu)
Rf= 0.166*alph”1.49;

case 'coupled tunable'
rl= P.Tube.portRadiusl (tubeTypeNum) ;
r2= P.Tube.portRadius2 (tubeTypeNum) ;

alphl= rl*sqrt(2*pi*f/nu);

186

Rfl= 0.166*alphl”~1.49;

alph2= r2*sqgrt (2*pi*f/nu);
Rf2= 0.166*alph271.49;

Rf= [Rfl Rf2];
alph= [alphl alph2];

)

% Compute inertance factor

function [I,b]= computelnertance (a)

% Estimate corrected inertance for a given non-dimensional parameter alpha.
% a= alpha

% Read lookup tables from files:

A= dlmread('alphabeta.txt');

B= dlmread('dimensionlessInertance.txt');

% Beta:
betA= A(:,1);
betB= B(:,1);

% Alpha/Beta curve:

aocb= A(:,2);

Ivec= B(:,2);

% Compute Alpha/Beta using our alpha value:
betA candidates= betA;

aob_candidates= a./betA candidates;

c= aob_ candidates - aob;

% Compare aob candidates vs the aob curve:
b= interpl (c,beth,0);

% Find dimensionless inertance value corresponding to b:
I= interpl (betB, Ivec,b);

% Estimate damping ratio using half-power method

function zet= halfPowerEst (w,mag)

Estimates damping ratio by applying the half power method on a resonance
peak.

INPUT 1: w - Vector containing frequency values [rad/s].

INPUT 2: mag - Vector containing response magnitude.

o 00 o o o

o

OUTPUT 1: zet - Estimate of damping ratio.

o
o

% Find the frequency response peaks:
[~,1locs]= findpeaks (mag);

o\

Extract ith natural frequency and peak magnitude:
wn= w(locs);

wn= wn (wn<lo*2*pi);

peak= mag(locs);

% Trim frequency response:

w= w(w<1l6*2*pi);

mag= mag (w<1l6*2*pi);

187

% Make sure the system is not an absorber:
if (length(wn)>1)
elseif (length(wn)<1l)
zet= -1.2345;
return
end

% Extract the peak and frequency of interest:
wn= wn(l);

peak= peak(l);

locs= locs(1l);

% Determine half-power amplitude:
halfPowerAmp= peak/sqrt (2);

% Determine half-power crossings via linear interpolation:
segmentl= mag(l:locs);

segment2= mag(locs+l:end);

wl= w(l:locs);

w2= w(locs+l:end);

wl= interpl (segmentl,wl,halfPowerAmp) ;

w2= interpl (segment2,w2,halfPowerAmp) ;

wl= wl(l),; w2= w2 (1l);

% Estimate damping ratio:

zet= (w2-wl)/ (2*wn);

end

function testDatab8 (P)
% Process OH-58C vibration data.
% INPUT 2: P - Struct containing all passing parameters.

% Allow code to run without input:
if (~exist('P','var'))

clc

clear all

close all
end
% Select mode shape type:
modeShapeType= 'baseline';
% modeShapeType= 'open';
modeShapeType= 'closed';

o

)

% Unpack baseline data:

[~,~,A]l= xlsread('baseline all.xlsx', 'BK.data');
fregqVec= cell2mat (A(l2:end,1));

fregqVec= freqVec (2:end);

omegaVec= 2*pi*freqgVec;

% Unpack open valve data:

[~,~,B]= xlsread('open all.xlsx','BK.data');
fregqVecB= cell2mat (B(l12:end, 1)) ;

freqVecB= freqgVecB(2:end) ;

omegaVecB= 2*pi*freqgVecB;

)

% Unpack closed valve data:

188

189

[~,~,C]l= xlsread('closed all.xlsx','BK.data'");
freqVecC= cell2mat(C(l2:end, 1))

fregVecC= fregVecC(2:end);

omegaVecC= 2*pi*freqVecC;

% Unpack nodes:

nodelList= A(2,:);

nodelList= nodelList (cellZ2mat (cellfun(@ischar,nodelList, 'UniformOutput',0)));
numNodes= length (nodelList) ;

% Initialize data cell:

[dataCell dataCellB dataCellC]= deal (cell (4, numNodes)) ;
[dataCell (1, :) dataCellB(1l,:) dataCellC(1l,:)]= deal (nodelist);

for k= 1:numNodes
% Baseline
reals= cell2mat (A(l2:end,2*k));
imags= cell2mat (A(12:end,2*k+1));
reals= reals(2:end);
imags= imags (2:end) ;
mags= sqrt(reals.”2+imags.”2);
mags= mags./ (omegaVec.”"2) ;
phs= atan?2 (imags, reals) ;

dataCell{2,k}= mags;
dataCell{3, k}= phs;
dataCell{4,k}= imags;

% Open

realsB= cellZ2mat (B(12:end, 2*k));
imagsB= cell2mat (B(l2:end,2*k+1));
realsB= realsB(2:end);

imagsB= imagsB(2:end) ;

magsB= sqgrt (realsB.”2+imagsB."2);
magsB= magsB./ (omegaVecB."2) ;
phsB= atan2 (imagsB, realsB);

dataCellB{2, k}= magsB;
dataCellB{3, k}= phsB;
dataCellB{4,k}= imagsB;

% Closed

realsC= cell2mat(C(12:end, 2*k));
imagsC= cell2mat (C(l2:end,2*k+1));
realsC= realsC(2:end);

imagsC= imagsC (2:end) ;

magsC= sqgrt (realsC.”2+imagsC."2);
magsC= magsC./ (omegaVecC."2) ;
phsC= atan2 (imagsC, realsC);

dataCellC{2,k}= magsC;

dataCellC{3,k}= phsC;

dataCellC{4,k}= imagsC;
end

% Split up data into x, vy, z:

[xDataCell, yDataCell, zDataCell]l= deal (cell (2, numNodes/3)) ;
[xDataCellB, yDataCellB, zDataCellB]= deal (cell (2, numNodes/3)) ;
[xDataCellC, yDataCellC, zDataCellC]= deal (cell (2, numNodes/3)) ;
[temp indX temp indY temp indZ]= deal(1l);

for k= 1l:numNodes

190

nodeName= dataCell{l,k};
nodeNum= str2double (nodeName (isstrprop (nodeName, 'digit')));
if (~isempty (strfind(nodeName, 'x")))

% Baseline:
xDataCell{l, temp indX}= nodeNum;
xDataCell{2, temp indX}= dataCell{2,k};
xDataCell{3, temp indX}= dataCell{3,k};

xDataCell{4,temp_indX}: dataCell{4,k};

% Open:

xDataCellB{1l, temp indX}= nodeNum;
xDataCellB{2, temp indX}= dataCellB{2,k};
xDataCellB{3, temp indX}= dataCellB{3,k};
xDataCellB{4,temp indX}= dataCellB{4,k};

% Closed:

xDataCellC{1l, temp indX}= nodeNum;
xDataCellC{2, temp indX}= dataCellC{2,k};
xDataCellC{3, temp indX}= dataCellC{3,k};
xDataCellC{4,temp indX}= dataCellC{4,k};

temp indX= temp indX+1;

elseif (~isempty(strfind (nodeName, 'v')))
% Baseline:
yDataCell{l, temp indY}= nodeNum;
yDataCell{2,temp indY}= dataCell{2,k};
yDataCell{3, temp indY}= dataCell{3,k};
yDataCell{4,temp indY}= dataCell{4,k};

% Open:

yDataCellB{1l, temp indY}= nodeNum;
yDataCellB{2,temp indY}= dataCellB{2,k};
yDataCellB{3, temp indY}= dataCellB{3,k};
yDataCellB{4,temp indY}= dataCellB{4,k};

% Closed:

yDataCellC{1l,temp indY}= nodeNum;
yDataCellC{2,temp indY}= dataCellC{2,k};
yDataCellC{3,temp indY}= dataCellC{3,k};
yDataCellC{4,temp indY}= dataCellC{4,k};

temp indY= temp indY+1;

else
% Baseline:
zDataCell{l, temp indZ}= nodeNum;
zDataCell{2,temp indZ}= dataCell{2,k};
zDataCell{3,temp indZ}= dataCell{3,k};
zDataCell{4,temp indZ}= dataCell{4,6k};

% Open:

zDataCellB{l,temp_indZ}: nodeNum;
zDataCellB{2, temp indZ}= dataCellB{2,k};
zDataCellB{3, temp indZ}= dataCellB{3,k};
zDataCellB{4, temp indZ}= dataCellB{4,6k};

% Closed:

zDataCellC{1, temp indZ}= nodeNum;
zDataCellC{2, temp indZ}= dataCellC{2,k};
zDataCellC{3, temp indZ}= dataCellC{3,k};
zDataCellC{4, temp indZ}= dataCellC{4,6k};

temp indZ= temp indZ+1;
end
end

)

$ Sort cell array
[~,ix]= sort ([xDataCell{l,:}], 'ascend');
xDataCell= xDataCell (:,ix);

[~,ix]= sort([xDataCellB{1l,:}], 'ascend");
xDataCellB= xDataCellB(:,1x);

[~,ix]= sort ([xDataCellC{1l,:}], 'ascend"');
xDataCellC= xDataCellC(:,1ix);

[~,1iy]= sort([yDataCell{l,:}], "ascend');
yDataCell= yDataCell (:,1iy);

[~,1iy]= sort([yDataCellB{1l,:}], "ascend');
yDataCellB= yDataCellB(:,1iy);

[~,1iy]= sort([yDataCellC{1l,:}], "ascend');
yDataCellC= yDataCellC(:,1iy);

[~,1z]= sort([zDataCell{1l,:}]1, "ascend");
zDataCell= zDataCell (:,iz);

[~,1z]= sort([zDataCellB{1l,:}], 'ascend');
zDataCellB= zDataCellB(:,iz);

[~,1z]= sort([zDataCellC{1l,:}], 'ascend');
zDataCellC= zDataCellC(:,1iz);

% Node indices:
nodeVec= cell2mat (zDataCell (1, :));

% Mode shapes

if (1)
% Frequency response
if (1)
magZ= zDataCell{2,length (nodeVec) };
figure (3)
semilogx (freqVec,20*1ogl0 (magZ), 'LineWidth', 3)
x1lim([1 1007])
xlabel ('Frequency [Hz]")
ylabel ('Tip Displacement/Tip Force [dB]'")
hold all
if (exist('B','var')&s& 0)
magB= zDataCellB{2, length (nodeVec) };
semilogx (fregqVecB,20*1ogl0 (magB), 'LineWidth', 3)
end
if (exist('C','var') && 0)
magC= zDataCellC{2, length (nodeVec) };
semilogx (fregqVecC,20*1ogl0 (magC), 'LineWidth', 3)
end
legend('Baseline', 'Open Valve', 'Closed Valve')
end

modeInd2= freqVec==2.625;
modeIndb5= fregqVec==5.375;
modeIndll= freqgVec==11.25;

191

o\

oo

o

oo

o

oo

192

[msAmp2z,msAmp5z, msAmpllz]= deal (zeros (length (nodeVec),1));

switch modeShapeType
case 'baseline'
zDC= zDataCell;
case 'open'
zDC= zDataCellB;
case 'closed'
zDC= zDataCellC;
otherwise
error ('what'")
end
for k= 1l:length (nodeVec)
mags kx= xDataCell{2,k};
mags_ky= yDataCell{2,k};
mags kz= zDC{2, k};

phs kx= xDataCell{3,k};
phs ky= yDataCell{3,k};
phs_kz= zDC{3,k};

imags kx= mags kx.*sin(phs kx);
imags_ky= mags_ky.*sin(phs ky);
imags_ kz= mags kz.*sin(phs kz);

msAmpllz (k)= imags kz (modeIndll);

msAmp5z (k)= imags kz (modeInd5) ;

msAmp2z (k)= imags kz (modeInd2);
end

[

% Tailboom coordinates:
xVec= [-1 0 8 16 32 40 48 56 72 120 150]*0

if (exist('P','var'))
figure (P.Figure.figl)
else
figure (1)
end
hold all

% Shift mode shapes to zero at the root:

if (0)
msAmp5z= msAmp5z-msAmp5z (2) ;
msAmpllz= msAmpllz-msAmpllz (2);
msAmp2z= msAmp2z-msAmp2z (2) ;

end

plot (xVec,msAmpllz)

xlabel ('"Axial Position [m]"'")

ylabel ('Im[Displacement] [m]")

legend ('Rigid Mode', '"lst Mode (5 Hz)','2nd Mode
title('Vertical Bending Mode Shapes')

if (exist('P','var'))

.0254;

(11 Hz)")

% Compute slope difference between F2MC tube attachment points:

slopeVec= diff (msAmp5z) ./diff (xVec)';

rootSlope= interpl (xVec(l:end-1),slopeVec,0);
endSlope= interpl (xVec (l:end-1),slopeVec,P.Tube.length);

slopeDiff= endSlope-rootSlope;

fprintf ('\n\nExperimental Slope Difference,

Mode 1:

$g\n\n', slopeDiff)

193

slopeVec= diff (msAmpllz)./diff (xVec)"';

rootSlope= interpl (xVec(l:end-1),slopeVec,0);

endSlope= interpl (xVec (l:end-1),slopeVec,P.Tube.length);
slopeDiff= endSlope-rootSlope;

fprintf ('Experimental Slope Difference, Mode 2: %$g\n\n',slopeDiff)
end
end
end

function P out= convertUnits (P)

convertUnits.m

Converts frequency magonse magnitude data to the proper display units.
INPUT 1: P - Data structure containing system parameter values.
OUTPUT 1: P out - Data structure containing converted units.

00 d° o o oP

oo
o

% Unpack variables:
outFreg= P.Frequency.outfFreq;
sysType= P.SysType;
units= P.Simulation.units;
TFmode= P.TFmode;
if (isfield(P.Frequency, 'magBeam'))
magBeam= P.Frequency.magBeam;
end
if (isfield(P.Frequency, 'magBeamTube'))
magBeamTube= P.Frequency.magBeamTube;
end
if (isfield(P.Frequency, 'magBeamTubeRes'))
magBeamTubeRes= P.Frequency.magBeamTubeRes;
end
% Select forcing frequency at which to display output:
switch outFreq
case 'l/rev'
ind= 10;
case '4/rev'
ind= 2400;
otherwise
error ('Please select a forcing frequency')
end
P.Plot.ind= ind;
% Select system type, i.e. bare beam or fluidlastic:
switch sysType
case 'Tailboom'
mag out= magBeam(ind) ;
case 'Fluidlastic'
mag_out= magBeamTube (ind) ;
otherwise
error ('Please select a system.')
end

switch TFmode
case 1
% Tip force to tip displacement
switch units
case 'English'
P.Frequency.magBeam= magBeam*175.126835;

if (exist ('magBeamTube', 'var'))
P.Frequency.magBeamTube= magBeamTube*175.126835;
P.Frequency.magBeamTubeRes= magBeamTubeRes*175.126835;
end
t str= 'Tip Displacement Per Unit Tip Force [in/1bf]"';
mag_out= mag out*175.126835;

str out= [num2str(mag_out) ' in/lbf'];

case 'SI'
t str= 'Tip Displacement Per Unit Tip Force [m/N]';
str_out= [num2str(mag _out) ' m/N'];

end
y_str= 'Tip Displacement per Unit Tip Force [dB]';
plot type= 'dB';
case 2
% Tip force to root moment. Normalize by beam length:
magBeam= magBeam/P.Beam.length;
magBeamTube= magBeamTube/P.Beam.length;
switch units
case 'English'
error ('INCOMPLETE ")
case 'SI'
error ('"INCOMPLETE ")
end
y _str= 'M(0)/F(L) [dB]';
tStr= 'Root Moment Per Unit Tip Force [N-m/N]';
case 3
% Tip force to root shear:
switch units
case 'English'
error (' INCOMPLETE ")
case 'SI'
error ("INCOMPLETE ")
end
y_str= 'V(0)/w(L) [dB]';
tStr= 'Root Shear Per Unit Tip Force [N/N]';
case 4
% Tip force to internal pressure:
switch units
case 'English'
if (exist ('magBeamTube', 'var'))
sf4= 0.00014504/0.2248;
P.Frequency.magBeamTube= magBeamTube*sf4;
P.Frequency.magBeamTubeRes= magBeamTubeRes*sf4;
end
t_str= 'Fluid Pressure Per Unit Tip Force [psi/lbf]';
mag out= mag out*sf4;

str_out= [num2str (mag_out) ' psi/lbf'];
y_str= 'log {10} |p 1/F(L)| [psi/lbf]l';
case 'SI'

t str= 'Fluid Pressure Per Unit Tip Force [Pa/N]';
str out= [num2str (mag out) ' Pa/N'];
y _str= 'log {10}|p 1/F(L)| [Pa/N]';

end

plot type= 'loglog';

case 5

)

% Tip force to axial force:

switch units

case 'English'
t str= 'Tube Axial Force Per Unit Tip Force [lbf/lbf]';
str out= [num2str (mag out) ' 1bf/lbf'];

194

195

y str= 'log {10} |F t/F(L)| [lbf/lbf]';
case 'SI'

t str= 'Tube Axial Force Per Unit Tip Force [N/N]';
str_out= [num2str(mag_out) ' N/N'];
y str= 'log {10} |F t/F(L)| [N/N]';

end

plot type= 'loglog';

case 6

)

% Tip acceleration to internal pressure:
switch units
case 'English'

t str= 'Tube Pressure Per Unit Tip Acceleration [psi/g]';
str_out= [num2str(mag_out) ' psi/g'l;
y str= 'log {10} |F t/F(L)| [psi/gl"';

sf6= 0.000145037738/0.101971621;
P.Frequency.magBeamTube= magBeamTube*sf6;

case 'SI'
t_str= 'Tube Pressure Per Unit Tip Acceleration [psi/g]';
str out= [num2str(mag_out) ' psi/g'];
y _str= 'log {10} |F t/F(L)| [psi/gl"';
end
plot type= 'loglog';

case 7
% Tip acceleration to axial force:
error ("INCOMPLETE ")
case 8
% Tip force to volumetric flow rate:
switch units
case 'English'
t _str= 'Flow Rate Per Unit Tip Force [in"3/lbf-s]';
str out= [numZstr (mag out) ' in*3/1bf-s'];
y str= 'log {10} [Q/F(L)| [in"3/lbf-s]';
sf8= 61023.7/0.224808943;
P.Frequency.magBeamTube= magBeamTube*sf8;
P.Frequency.magBeamTubeRes= magBeamTubeRes*sf8§;

case 'SI'
t str= 'Flow Rate Per Unit Tip Force [m"3/N-s]';
str_out= [num2str (mag _out) ' m"3/N-s'];
y_str= 'log_{10}|Q/F(L)| [m"3/N-s]';
end
plot type= 'loglog';

case 9
% Tip force to tip acceleration:
P.Frequency.magBeam= magBeam/9.81;
if (exist ('magBeamTube', 'var'))
P.Frequency.magBeamTube= magBeamTube/9.81;
P.Frequency.magBeamTubeRes= magBeamTubeRes/9.81;
end
switch units
case 'English'
sf9= 0.2248089;
P.Frequency.magBeamTube= magBeamTube/sf9;
P.Frequency.magBeamTubeRes= magBeamTubeRes/sf9;
t str= 'Tip acceleration per Unit Tip Force [g/lbf]';
str out= [numZstr (mag out) ' g/lbf'];

case 'SI'
t_str= 'Tip acceleration per Unit Tip Force [g/N]';
str_out= [num2str(mag out) ' g/N'];
end

y_str= 'a(L)/F(L) [dB]';
plot type= 'dB';

case 10

o

switch units
case 'English'

% Tip force to accumulator pressure:

sf10= 0.0001450377/0.224809;

P.Frequency.magBeamTube= magBeamTube*sf1l0;
P.Frequency.magBeamTubeRes= magBeamTubeRes*sfl0;
t _str= 'Accumulator Pressure Per Unit Tip Force

str out= [numZ2str (mag out)
y str= 'log {10}|p a/F (L) |
case 'SI'

t str= 'Accumulator Pressure Per Unit Tip Force

str out= [num2str (mag out)
y str= "'log {10}|p a/F (L) |
end
plot type= 'loglog';

otherwise

end

.Plot

B v eI}

o

_out=
end

error ('Choose a transfer function')

.title= t str;
.Plot.
.Plot.
.Plot.

output= str out;
ylabel= y str;
type= plot type;

P;

' psi/lbf'];
[psi/1bf]"';

' Pa/N'];
[Pa/N]"';

[psi/lbf]"';

[Pa/N]1"';

196

VITA

Kentaro Miura

Education

The Pennsylvania State University, University Park, PA
Ph.D. in Mechanical Engineering (May 2016)
M.S. in Mechanical Engineering (August 2015)

Cornell University
B.S. in Mechanical Engineering, cum laude (August 2011)

Awards

Bell Graduate Fellowship (2012-2015)

First Place, US Army Research Laboratory Summer Symposium (August 2014)
Third Place, AIAA Region | Student Conference (2013)

Best Paper Award, Penn State College of Engineering Research Symposium (2013)
College of Engineering Fellowship (2011-2012)

Publications

[1] Krott, M.J., Miura, K, Rahn, C.D., Smith, E.C., “Finite Element Modeling of Fluidic Flexible
Matrix Composite Treatments for Bending and Torsional Vibration Control,” AIAA SciTech
2016, San Diego, CA, 2016.

[2] Miura, K, Zhu, B, Rahn, C.D., Smith, E.C., Bakis, C.E., “Vibration Isolation of a Cantilever
Beam with Fluidic Flexible Matrix Composite Tubes,” ASME IDETC — 27th Conference on
Mechanical Vibration and Noise, Boston, MA, 2015.

[3] Miura, K, Krott, M.J., Smith, E.C., Rahn, C.D., Romano, P.Q., “Experimental Validation of
Tailboom Vibration Control Using Fluidic Flexible Matrix Composite Tubes,” AHS International
71st Annual Forum Proceedings, Virginia Beach, VA, 2015.

[4] Krott, M.J., Miura, K, LaBarge, S.M., Rahn, C.D., Smith, E.C., and Romano, P.Q., “Tube
Compliance Effects on Fluidic Flexible Matrix Composite Devices for Rotorcraft Vibration
Control,” AIAA SciTech 2015, Kissimmee, FL, 2015.

[5] Miura, K, Krott, M.J., Smith, E.C., Rahn, C.D., and Romano, P.Q., “Experimental
Demonstration of Tailboom Vibration Reduction Using Fluidic Flexible Matrix Composite
Tubes,” AHS International 70th Annual Forum Proceedings, Montreal, QC, 2014.

[6] Miura, K, Rahn, C.D., and Smith, E.C., “Passive Tailboom Vibration Control Using Fluidic
Flexible Matrix Composite Tubes,” AIAA SciTech 2014, National Harbor, MD, 2014.

Under preparation/review

[1] Miura, K, Smith, E.C., Rahn, C.D., “Modeling and Design of a Tailboom Vibation Absorber
Using Fluidic Flexible Matrix Composite Tubes,” Journal of the American Helicopter Society,
under review.

[2] Miura, K, Krott, M.J., Smith, E.C., Rahn, C.D., “Experimental Validation of Tailboom
Vibration Control Using Fluidic Flexible Matrix Composite Tubes,” Journal of the American
Helicopter Society, in preparation.

